| |||||
МЕНЮ
| Учебное пособие: Электрические аппаратыКатушки электромагнитов В результате расчета магнитной цепи определяется поток в катушке и ее н. с. Катушка должна быть рассчитана таким образом, чтобы, с одной стороны, обеспечить требуемую н. с, а с другой — чтобы максимальная температура обмотки не превышала допустимой для используемого класса изоляции. В зависимости от способа включения различают параллельные (шунтовые) и последовательные (сериесные) обмотки. В первом случае напряжение, приложенное к обмотке, постоянно по своему действующему значению. Во втором — сопротивление обмотки электромагнита во много раз меньше сопротивления остальной части цепи. а) Расчет обмотки электромагнита постоянного тока. Эскиз обмотки представлен на рис.. Заданы напряжение U и н. с. Iw. Требуется рассчитать и спроектировать катушку. Сечение провода q находим, исходя из потребной н. с.
Рис.3.4Электромагнит с обмоткой.
(3.39)
или где р —удельное сопротивление; /ср —средняя длина витка; R — сопротивление обмотки Из уравнения следует, что при неизменной средней длине витка и заданном р н. с. определяется произведением Uq. Если при неизменном напряжении и средней длине витка требуется увеличить н. с, то необходимо взять провод большего сечения. При этом обмотка будет иметь меньшее число витков. После определения сечения провода с помощью таблиц сортаментов находится ближайший стандартный диаметр провода. Если выполнить обмотку проводом данного диаметра, то н. с. обмотки не будет зависеть от способа укладки провода. При «дикой» (нерядовой) обмотке число витков при том же окне уменьшится по сравнению с рядовой, величина тока пропорционально увеличится, а н. с. катушки останется без изменения. Мощность,
потребляемая катушкой, при дикой обмотке увеличится, поскольку уменьшится
коэффициент При
изменении питающего напряжения и сохранении размера окна обмотки должно иметь место
равенство так как Если £/2 диаметр провода уменьшится. При меньшем диаметре провода из-за возросшей относительной толщины изоляции коэффициент заполнения уменьшится. Следовательно, при переходе на более высокое напряжение мощность, потребляемая катушкой, увеличивается. Для ориентировочной оценки нагрева катушки можно пользоваться следующими рекомендациями. Опытным путем установлено, что в катушке на изоляционном каркасе, выполненной проводом ПЭЛ, максимальная температура не превысит 105°С, если на каждый ватт выделяемой мощности будет приходиться определенная боковая поверхность (ао=5б„,,/Я — удельная охлаждающая боковая поверхность). Величина этой поверхности зависит от геометрии катушки:
(3.40) где Если
после расчета окажется, что Можно получить:
(3.41) Если при
требуемой н. с. мощность Р получается больше, чем После приближенной оценки теплового режима катушки необходимо определить максимальную температуру внутри ее. Для последовательной обмотки исходными величинами для расчета являются н. с. {Iw) и ток цепи /„. Число витков обмотки находится из выражения
(3.42) Сечение провода можно выбрать исходя из рекомендуемой плотности тока, равной 2—4 а/мм2 — для продолжительного режима работы, 5—12 а/мм2 — для повторно-кратковременного режима работы, 13—30 а/мм2— для кратковременного режима работы. Эти величины можно увеличить примерно в 2 раза при сроке службы до 500 ч. Окно, занимаемое рядовой обмоткой, определяется числом витков и диаметром провода по изоляции. б) Расчет обмотки электромагнитов переменного тока. Исходными данными для расчета параллельной катушки являются амплитуда н. с, амплитуда потока и напряжение. Напряжение сети уравновешивается активным и реактивным падением напряжения (3.43) Поскольку величины тока и сопротивления могут быть рассчитаны только после определения числа витков, то представленное выражение не позволяет сразу найти все параметры катушки. Задача решается методом последовательных приближений. Так как
активное падение напряжения значительно меньше неактивного, то в начале расчета
можно положить
Так как при расчете w мы пренебрегаем активным падением напряжения, действительное число витков должно быть несколько меньше. Обычно берут
(3.44)
(3.45) После
этого определяем среднюю длину витка
(3.46) Теперь производим проверку выбранных параметров: если напряжение сети в квадрате U2 отличается от суммы (IR)2 и (4,44шфт)2 более чем на 10%, то необходимо варьировать число витков до тех пор, пока не получим удовлетворительного совпадения. После расчета активного сопротивления производится проверка катушки на нагрев. Расчет ведется так же, как и для катушек постоянного тока. Характерной особенностью здесь является нагрев магнитопровода за счет потерь от вихревых токов и гистерезиса. Отвод тепла, выделяемого в самой катушке через сердечник, затруднен. Поэтому точка с максимальной температурой лежит на внутреннем радиусе катушки. Из-за плохого охлаждения катушки через сердечник в катушке стремятся развивать поверхность торцов, через которые может отдаваться значительная часть тепла. Если полное сопротивление обмотки электромагнита при любом рабочем зазоре значительно меньше полного сопротивления цепи (последовательная обмотка), то величина тока в обмотке электромагнита не зависит от положения якоря. Расчет таких обмоток ведется так же, как и для последовательных обмоток постоянного тока. Закон изменения потока в рабочем зазоре такого электромагнита аналогичен закону в электромагните постоянного тока, поскольку электромагнит работает при постоянной н. с. катушки. Полное падение напряжения на обмотке электромагнита равно:
(3.47) Если электромагнит с параллельной катушкой питается от источника с другим напряжением и сила тяги должна остаться той же, то обмоточные данные должны быть соответственно изменены. Величина н. с. и угол сдвига между током и напряжением при этом также считаются неизменными. Должны быть соблюдены следующие соотношения:
Полная мощность обмоток при переходе с одного напряжения на другое при соблюдении указанных условий не изменяется, так как
Магнитные материалы для электромагнитов постоянного и переменного тока При заданном потоке падение магнитного потенциала уменьшается с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материала, при данном потоке магнитная проницаемость должна быть возможно выше. Это позволяет уменьшить н. с. катушки и мощность, необходимую для срабатывания электромагнита; уменьшаются размеры катушки, обмоточного окна и всего электромагнита. Уменьшение н. с. катушки при прочих неизменных параметрах уменьшает температуру обмотки. Вторым важным параметром материала является индукция насыщения. Сила, развиваемая электромагнитом, пропорциональна квадрату индукции. Поэтому чем больше величина допустимой индукции, тем больше величина развиваемой силы при тех же размерах. После того как катушка электромагнита обесточивается, в системе существует остаточный поток, который определяется коэрцитивной силой материала и проводимостью рабочего зазора. Остаточный поток может привести к залипанию якоря. Во избежание этого явления требуется, чтобы материал обладал низкой коэрцитивной силой (малой шириной петли гистерезиса). Существенными требованиями являются низкая стоимость материала и его технологичность. В электромагнитах переменного тока для компенсации активных потерь в стали приходится затрачивать дополнительную энергию. Это приводит к увеличению намагничивающего тока в катушке аппарата. В связи с этим материалы, используемые для электромагнитов переменного тока, должны иметь малые потери на вихревые токи и гистерезис. Сердечники для таких электромагнитов делаются шихтованными, причем чем выше частота тока, тем меньше должна быть толщина листа. Пластины магнитопровода изготавливаются из листовой стали штамповкой. Для быстродействующих электромагнитов постоянного тока также применяются шихтованные сердечники, так как при этом уменьшаются вихревые токи, дающие замедление нарастания потока. Наряду с указанными свойствами магнитные характеристики материалов должны быть стабильны (не меняться от температуры, времени, механических ударов). Лекция №4 Тема лекции: Энергетический баланс электромагнита постоянного тока. Расчет силы тяги, формула Максвелла. Сила тяги электромагнитов переменного тока. Магнитный демпфер СИЛА ТЯГИ ЭЛЕКТРОМАГНИТОВ а) Энергетический баланс электромагнита постоянного тока. Рассмотрим процесс возникновения магнитного поля в простейшем клапанном электромагните (рис. 4.1,а). После включения цепи напряжение источника уравновешивается активным падением напряжения и э. д. с. самоиндукции:
(4.1) Умножив обе части уравнения на idt, получим:
Произведя интегрирование, получим:
(4.3) где Левая
часть равенства представляет энергию, которая затрачена источником тока. Первый
член правой части есть потери энергии в активном сопротивлении цепи,
второй—энергия, затраченная на создание магнитного поля. До тех пор, пока сила,
развиваемая электромагнитом, меньше силы пружины, якорь электромагнита
неподвижен, и потокосцепление нарастало при неизменном значении рабочего зазора
(4.4)
Рис.4.1 К определению силы тяги электромагнита При
движении якоря потокосцепление изменится от
(4.5) где При
переходе от зазора Энергия, накопленная в магнитом поле, к концу хода равна Л4:
(4.6) На основании закона сохранения энергии можно написать:
Механическая работа, совершенная якорем электромагнита, определяется из
(4.8) Согласно рис. эта энергия равна:
б) Расчет силы тяги электромагнита постоянного тока. Средняя сила на ходе якоря от 6i до 62 равна:
Следует
учитывать, что Для расчета силы, развиваемой электромагнитом, необходимо определить механическую работу Л3, совершаемую электромагнитом при небольшом перемещении якоря, после чего разделить эту работу на изменение зазора, что в пределе дает:
(4.11) Сила Очевидно, что для каждого элементарного перемещения якоря можно определить свое А3 и найти среднюю силу, развиваемую на данном участке хода якоря. Зависимость тяговой силы электромагнита от величины рабочего зазора при неизменном значении тока в его обмотке называется статической характеристикой электромагнита. Величина силы может быть найдена с помощью рис. 4.2:
(4.12)
Рис. 4.2. К определению силы тяги Эта сила развивается электромагнитом при среднем зазоре
(4.13) Аналогично определяется сила
(4.14) которая развивается при среднем зазоре
(4.15) На готовом электромагните статическая характеристика может быть легко снята. Для этого в воздушный зазор электромагнита ставится немагнитная прокладка, после чего к электромагниту подводится напряжение. С помощью динамометра постепенно увеличивается противодействующая сила до тех пор, пока якорь не оторвется от сердечника. Эта сила в момент отрыва будет равна статическому усилию при зазоре, равном толщине прокладки. После этого меняют толщину прокладки и опыт повторяют при новом значении зазора. Величина силы, развиваемой электромагнитом, может быть рассчитана с помощью формулы Максвелла. Если поле в рабочем зазоре равномерно и полюсы ненасыщены, то формула Максвелла для силы в одном зазоре имеет вид
(4.16) в) Аналитический расчет силы для ненасыщенных электромагнитов. Исходя из закона сохранения энергии, можно показать, что энергия, полученная магнитным полем при элементарном перемещении якоря, равна механической работе, произведенной якорем, и изменению запаса электромагнитной энергии:
где Из уравнения легко получить:
(4.18)
(4.19)
(4.20) Для клапанного электромагнита потокосцепление зависит от рабочего потока и потока рассеяния:
Потокосцепление Ч7в, обусловленное потоком рассеяния, в свою очередь равно:
Подставив
(4.24) Поскольку
проводимость рассеяния от зазора б не зависит, то
(4.25) Если известна
аналитическая зависимость При достаточно малом зазоре для системы рис. 3.1
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 |
ИНТЕРЕСНОЕ | |||
|