рефераты бесплатно
 

МЕНЮ


Учебное пособие: Электрические аппараты

Таким образом, если разомкнуть цепь при токе I и при этом на контактах установится дуга с напряжением Uл (полагаем, что дуга сразу достигает определенной длины, которой соответствует характеристика UR = f(i), нанесенная на рис. 8.6), то ток спадет со значения I до  и дуга при этом будет устойчиво гореть.

Для обеспечения условий гашения дуги после размыкания контактов необходимо, чтобы вольтамперная характеристика дуги оказалась выше внешней характеристики цепи, т. е. прямой

 когда не будет пересечения этих кривых и не возникнет точка А. В этом случае ток в цепи со значения I будет убывать до нуля. Во всем диапазоне изменения тока от I до 0 будет сохранено условие

  (8.4)


Весьма эффективным средством, повышающим дугогасящие свойства аппарата и снижающим перенапряжения при отключении цепей постоянного тока, являются шунтирование дугового промежутка активным сопротивлением г (рис. 8.7).

На рис. 8.8 дано построение, позволяющее сделать заключение об эффективности шунтирования дугового промежутка сопротивлением r. Шунтирующее сопротивление r находится под тем же напряжением Uд, что и дуга. Ток в цепи, текущий через индуктивность L и сопротивление R, разветвляется на ток дуги и ток шунта, при этом всегда остается справедливым равенство


Рис. 8.7. Электрическая цепь постоянного тока с дугой, шунтированной активным сопротивлением

Для оценки условий гашения дуги необходимо построить зависимость напряжения на дуге от общего тока, т. е. UA = f(i), чтобы судить, как ориентируется кривая напряжения по отношению к реостатной характеристике цепи Uи — iR = f(i). Из рис. 8.8 можно видеть, что (без шунта) кривая напряжения на дуге проходит вблизи прямой почти касаясь ее. Условия гашения дуги здесь соблюдаются, но они близки к предельным, так как даже небольшое понижение характеристики дуги привело бы к устойчивой дуге. Кроме того, пик напряжения на дуге в конце гашения весьма велик, а так же высоко значениет. е. напряжение на индуктивности

Если же мы подключаем к дуговому промежутку сопротивление r, имеющее вольтамперную характеристику в виде прямой общий ток в цепи i должен складываться из токов дуги и шунта, т. е.

Кривая напряжения на дуге в функции общего тока 2 (рис. 8.8) лежит существенно выше, чем кривая напряжения на дуге без шунта 1. Таким образом, процесс гашения происходит значительно быстрее, и наибольший пик напряжения на дуге будет В этот момент дуга гаснет. После этого ток продолжает убывать до момента пересечения прямых (iro). Этот ток остается в цепи. Он равен

Для полного разрыва цепи ток iro необходимо отключить дополнительным контактом К (рис. 8.5). В этом состоит недостаток метода шунтирования, так как он несколько усложняет коммутационный аппарат.



Рис.8.8. Построение вольтамперной характеристики при шунтировании дуги активным сопротивлением

Аналогичных результатов можно достичь, прибегая к шунтированию индуктивности цепи или всей нагрузки. Однако этот метод имеет недостаток, потому что при включенной цепи через шунт будет непрерывно протекать ток и в нем возникнут значительные потери. При сопоставлении рассмотренных методов можно заключить, что более рациональным является применение шунтов на выключателях.

Как уже было сказано, критическим можно назвать такой режим, когда характеристика UA = f(i) делается касательной к внешней характеристике цепи. Длину дуги, при которой наступает такой режим, называют критической. При длине, большей критической, дуга всегда гасится, а при меньшей — возможно устойчивое ее горение.


Лекция №9

Тема лекции:

Горения и гашения дуги переменного тока: в условиях активной деионизации, высокого напряжения, низкого напряжения.

Условия гашения дуг переменного тока

Дуга переменного тока обычно гасится легче, чем дуга постоянного тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения сопротивления дугового столба (практически до бесконечности). При переменном токе этого делать не требуется: здесь через каждый полу период ток естественным путем проходит через нулевое значение, и надо лишь воспользоваться этим обстоятельством и создать вблизи перехода через нуль такие условия в межконтактном промежутке, чтобы протекание тока цепи вслед за этим переходом не возобновлялось. Поэтому условия гашения дуги переменного тока следует трактовать иначе, чем условия гашения дуги постоянного тока. Исключением может быть лишь открытая дуга переменного тока в установках высокого напряжения, когда определяющим фактором является активное сопротивление сильно растянутого дугового столба. Тогда условия гашения дуги переменного тока по существу становятся близкими к условиям гашения дуги при постоянном токе. В другом крайнем случае сопротивление столба дуги во время ее горения практически не влияет на процесс ее гашения (в условиях активной деионизации), и тогда при определении условий гашения дуги рассматривается взаимозависимость процессов за переходом тока через нуль. Но существует и третий случай, когда при оценке условий гашения дуги надо считаться как с влиянием активного сопротивления столба дуги, так и учитывать характер протекания процессов за нулем тока.

Перейдем к рассмотрению этих трех случаев.

А. Открытая дуга переменного тока при высоком напряжении источника

Открытая дуга переменного тока в моменты перехода тока через нуль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вследствие перехода через нуль и образования прочности промежутка, а главным образом вследствие растяжения дугового столба и образования на нем высокого напряжения горения (на всем протяжении полупериода). При таком режиме ток в цепи начинает заметно падать за несколько периодов до полного обрыва дуги и причиной его ограничения является возрастание сопротивления канала дуги.

При определенной длине дуги переменного тока напряжение сети оказывается недостаточным для поддержания горения дуги (критическая длина), наступает нарушение баланса мощностей (подводимой и отдаваемой), и ток цепи довольно быстро уменьшается и, наконец, совсем прекращается.

На рис. 9.1 приведена осциллограмма тока и напряжения на дуге переменного тока, возникшей при размыкании ножа разъединителя высокого напряжения.


Рис. 9.1. Осциллограмма тока и напряжения открытой дуги при высоком напряжении источника

В начале процесса, как можно видеть, ток в цепи меняется очень слабо и его величина определяется главным образом сопротивлением цепи. По мере же растяжения дуги доминирующим становится сопротивление дуги.

Таким образом, если в основу анализа процесса гашения открытой дуги переменного тока положить условие нарушения баланса напряжений при горении дуги (но не в нулевые переходы тока), то задача может быть сведена по существу к той же самой, которая возникает и при гашении дуги постоянного тока.

Для этой цели сделаем допущение, что статическая вольтамперная характеристика дуги при постоянном токе отражает зависимость между напряжением на дуге при переменном токе в момент максимума тока от амплитуды тока (амплитудная характеристика). Также предположим, как это мы делаем в случае постоянного тока, что для цепи переменного тока, содержащего только активное сопротивление, можно принять то же условие устойчивости горения дуги, т. е.

 (9.1)

где Um — амплитудное значение напряжения источника (сети):

 амплитуда тока в цепи с дугой;

 напряжение па дуге в момент максимума тока

Если так же, как и ранее, предположить, что напряжение при максимуме тока связывается с амплитудой тока уравнением

 (9.2)

то критическая длина дуги может быть представлена

 



гдеамплитудное значение тока в цепи, ограниченного только собственным сопротивлением цепи R (дуговой промежуток замкнут накоротко). Если положить, для воздуха и относительно небольших токов как и ранее, С = 80 и а = 0,5 и выразить ток и напряжение в действующих значениях, то для цепи, содержащей только активное сопротивление (безиндуктивная цепь), получим

 (9.2)

где                       действующее значение критического тока, А;

действующее значение тока цепи при закороченном дуговом промежутке, А;

действующее значение напряжения сети, кВ критическая длина дуги, м При растянутой дуге напряжение на дуговом промежутке приближается к синусоидальному, поэтому для ориентировочных расчетов можно сделать допущение о синусоидальности напряжения на дуге, что позволяет баланс напряжений для цепи содержащей индуктивное сопротивление и сопротивление столба дуги представить так:        

 (9.3)

Используя опять уравнение вольтамперной характеристики дуги и решая задачу в отношении критической длины дуги и критического тока, получим после подстановки для частного случая С = 80 и а = 0 5 получим'

 (9.1)

где ток выражен в амперах; напряжение в киловольтах; lкр — в метрах.

Из сопоставления формул можно видеть, что в цепях с индуктивным сопротивлением критический ток и критическая длина дуги имеют более высокие значения по сравнению со значениями этих величин в цепи с чисто активным сопротивлением.

Приведенные формулы не учитывают ряда факторов, имеющих влияние на процесс гашения дуги (расположение электродов, ветровые условия и пр.), и могут служить лишь для ориентировочных расчетов критических токов и критических длин дуг при их угасании в установках высокого напряжения.

Б. Дуга переменного тока в условиях активной деионизации

Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с предыдущим (открытая дуга в цепи высокого напряжения). За счет активного воздействия газовой или жидкой среды диаметр дугового канала сокращается (плотность тока повышается) и изменение его следует почти синхронно с током.

При подходе тока к нулю дуговой столб приобретает весьма малые размеры и благодаря этому быстро распадается после достижения током нулевого значения, теряет свою проводимость и приобретает заметную электрическую прочность. В таком случае восстановление дуги в следующий полупериод связано с пробоем межконтактного промежутка. Эти условия характерны для отключающих аппаратов относительно высокого напряжения.

Таким образом, дуга переменного тока в условиях активной деионизации дугового столба представляет собой такое явление, когда при каждом переходе тока через нуль возникает соревнование двух процессов, а именно: процесса восстановления электрической прочности промежутка и процесса восстановления напряжения на промежутке. Исходя из такой трактовки процесса, нетрудно заключить, что для угасания дуги переменного тока при интенсивной деионизации необходимо обеспечить такой режим, при котором электрическая прочность дугового промежутка после достижения током его нулевого значения нарастала бы достаточно быстро и достигала бы достаточного уровня.

На рис. 9.2 показано изменение тока в цепи и напряжения на дуге, подвергающейся интенсивной деионизации, но все же горящей устойчиво в течение нескольких полупериодов. Как видно из этого рисунка, после первого и второго переходов тока через нуль напряжение на дуговом промежутке достигает относительно высоких значений пиков напряжения зажигания U3, при которых возникает зажигание дуги в последующий период. В процессе протекания тока наблюдается задержка на нуле (ожидание пробоя). Эти задержки в токе на нуле могут быть большей или меньшей величины в зависимости от существующих условий в цепи (сдвига фаз между током и напряжением, величины напряжения, действующего в цепи, постоянных контура L, С и R).

Если обратиться снова к рис. 9.2, можно установить, что после третьего перехода через нуль прекратилось протекание тока по цепи, т. е. дуга погасла, а на межконтактном промежутке выключателя полностью восстановилось напряжение, развиваемое источником (рис. 9.2, а). Сдвиг фаз между током и напряжением при этом принят близким к 90°. Как можно видеть из рисунка, при активной деионизации дуги пики напряжения зажигания ее обычно значительно превосходят по своей величине напряжение горения дуги. Таким образом, в отличие от открытой дуги, напряжение горения UД не является определяющей величиной при оценке условий угасания дуги.

Из рис. 9.2 также видно, что при первом переходе тока через нуль пик напряжения на дуге несколько меньше напряжения источника, и дуга легко зажигается вновь. При втором переходе тока через нуль, пик напряжения зажигания дуги несколько превышает напряжение зажигания при первом переходе тока через нуль, но все же дуга зажигается. При восстановлении напряжения на промежутке после третьего перехода через нуль возникают колебания, вследствие чего напряжение на нем существенно превосходит напряжение источника (в данном рассмотрении амплитуду напряжения).


Рис.9.2 .Процессы при гашении дуги переменного тока

Теоретически, если пренебречь пиком гашения дуги и затуханием колебаний (контур без потерь), амплитудное значение восстанавливающегося напряжения на дуговом промежутке может достигнуть двойной величины. При третьем переходе тока через нуль прочность промежутка достигает такой величины, что пик восстанавливающегося напряжения U оказывается недостаточным, чтобы вызвать повторное зажигание дуги, и цепь обрывается окончательно. Напряжение на промежутке в своем переходном режиме совершает ряд колебаний и далее меняется с рабочей частотой.

При оценке жесткости сети обычно подразумевают идеальный выключатель, т. е. полагают, что напряжение на дуге равно нулю, а после перехода тока через нуль сопротивление промежутка становится сразу равным бесконечности. При таком предположении восстановление напряжения на выключателе начинается с нуля, а не с пика гашения, и на затухание восстанавливающегося напряжения оказывает влияние только сопротивление цепи.

Существенно важной величиной при оценке жесткости сетей является коэффициент превышения амплитуды, представляющий собой отношение максимальной величины восстанавливающегося напряжения Uвт к мгновенному значению напряжения источника в момент перехода тока через нуль.

Таким образом, условие гашения дуги переменного тока при активной деионизации промежутка может быть сформулировано следующим образом: если после перехода тока через нуль прочность промежутка нарастает быстрее и остается все время выше, чем восстанавливающееся напряжение на выключателе, то процесс заканчивается угасанием дуги.

При несоблюдении этого условия наступают повторный пробой и восстановление дуги.

В. Дуга переменного тока в условиях отключения цепей низкого напряжения

В установках низкого напряжения (до 1000 в) электрическое сопротивление столба дуги обычно бывает соизмеримым с сопротивлением отключаемой цепи, а напряжение на дуге — с напряжением источника питания. В таких условиях уже нельзя пренебрегать влиянием напряжения (и сопротивления) дуги, а с другой стороны, — нельзя не рассматривать явлений на нуле тока, т. е. не учитывать влияния восстановления прочности при переходе тока через нуль.

Общая картина процессов при отключении цепи переменного тока низкого напряжения представлена на рис. 9.3. До момента размыкания контактов аппарата (МРК) по цепи протекал ток I, определяемый в совокупности величинами

В момент t0 разомкнулись контакты аппарата и начало возрастать сопротивление дугового промежутка Rд и напряжение на нем UД.

Увеличивающееся при гашении дуги сопротивление Rд приводит к некоторому уменьшению амплитудных значений тока (I1,I2,I3) по полупериодам и уменьшению сдвига фаз между током цепи iД и напряжением источника UИ. Соответствующие углы сдвига фаз, определяемые отрезками времени между моментами перехода через нуль тока дуги и напряжения источника, обозначены через  Понятие о сдвиге фаз между током и напряжением относится к синусоидальным явлениям. В процессе гашения электрической дуги в установках низкого напряжения синусоида тока искажается вследствие роста сопротивления дуги. Поэтому понятие о сдвиге фаз здесь носит условный характер. В моменты перехода тока дуги через нуль (точки1 и 2) не создавалось необходимых условий для окончательного погасания дуги за этими переходами и она повторно зажигалась вслед за ними. В момент 3-го перехода тока через нуль такие условия создались, дуга погасла и протекание тока по цепи прекратилось. За этим переходом по цепи может протекать лишь небольшой остаточный ток i0CT, определяемый так называемой остаточной проводимостью межконтактного промежутка аппарата.

При анализе условий возникновения между контактами выключателя электрической прочности, необходимой для гашения дуги, обычно рассматривают раздельно короткие и длинные промежутки с целью наиболее четкого выявления тех особенностей, которые необходимо использовать при конструировании дугогасительных устройств выключателей, предохранителей, контакторов, разрядников и пр.

В действительности, особенно в аппаратах низкого напряжения, имеют место смешанные процессы, т. е. свойственные и коротким, и длинным дугам одновременно.



Рис.9.3.Характер процессов при отключении цепи переменного тока низкого напряжения


Лекция №10

Тема лекции:

Магнитные усилители (МУ), дроссельный МУ, характеристики и режимы работы. МУ с самоподмагничиванием (МУС). Двухполупериодные схемы МУС

Общие сведения

Бесконтактными электроаппаратами называют устройства, предназначенные для включения, выключения или переключения (коммутации) электрических цепей без физического разрыва цепи.

Основой построения бесконтактных электроаппаратов служат различного рода нелинейные элементы. Главными из них являются нелинейные индуктивности — ферромагнетик с обмотками и нелинейные активные сопротивления — полупроводниковые приборы.

Ниже будут рассмотрены выполняемые на базе ферромагнетиков и полупроводниковых приборов некоторые основные элементы (магнитные и полупроводниковые усилители, логические элементы), на базе которых могут быть выполнены различного рода бесконтактные электрические аппараты.

Большинство из рассматриваемых элементов называют усилителями. Блок-схема простейшего усилителя приведена на рис. 10.1, в нем последовательно с напряжением питания включены нагрузка Z„ и управляемое нелинейное сопротивление (L = var, или R = var); эта цепь называется рабочей. Нелинейное сопротивление управляется от специального источника сигнала управления (чаше от источника постоянного напряжения Uy). Цепь, состоящая из источника сигнала управления, сопротивления Z.. и нелинейного сопротивления, называется цепью управления.

С изменением тока цепи управления iy меняются параметры нелинейного сопротивления и ток в рабочей цепи iр. В результате оказывается возможным малыми мощностями в цени управления управлять большими мощностями в нагрузке. Усиление происходит за счет мощности источника питания.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25


ИНТЕРЕСНОЕ



© 2009 Все права защищены.