рефераты бесплатно
 

МЕНЮ


Курсовая работа: Проектирование системы электроснабжения завода станкостроения. Электроснабжение цеха обработки корпусных деталей

В графической части лист 2 приведен генплан рассматриваемого завода c нанесенными на нем ЦЭН и картограммами.

В фактическом центре нагрузок мы не можем поставить ГПП, поэтому переносим ГПП в сторону источника питания.


8 ВЫБОР НАПРЯЖЕНИЯ ЭЛЕКТРОСНАБЖЕНИЯ

8.1 Выбор напряжения питания

Выбор напряжения питания, т.е. внешнего электроснабжения, зависит от мощности, потребляемой предприятием, его удаленности от источника питания, напряжения, имеющегося на источнике питания.

Для приближенного определения рационального напряжения Uрац, кВ можно воспользоваться формулами Илларионова или Стилла:

Uрац= (8.1)

Uрац=4,34   (8.2)

где P передаваемая мощность, МВт; - расстояние, км.

В большинстве случаев, напряжение полученное по формулам, оказывается нестандартным и для определения рационального стандартного напряжения принимают два ближайших стандартных напряжения и на основе технико-экономических расчетов определяют рациональное стандартное.

Для рассматриваемого завода рациональное напряжение, найденное по эмпирическим формулам будет

Uрац=

Uрац=

Следовательно, для электроснабжения завода выбираем напряжение 35 Кв, так как напряжение 35 кВ имеет экономические преимущества для предприятий средней мощности при передаваемой мощности 5-15 МВт на расстояние до 10-15 км.

8.2 Выбор напряжения распределения

Для распределительных сетей промышленных предприятий в основном применяются напряжения 10 и 6 кВ.

Для распределения электроэнергии применяем напряжение 6кВ, так как на ГПП устанавливаем трансформаторы мощностью до 16 МВА, и на предприятии имеются электроприемники 6 кВ.


9 ВЫБОР СХЕМЫ ВНЕШНЕГО И ВНУТРИОБЪЕКТНОГО ЭЛЕКТРОСНАБЖЕНИЯ

9.1 Схемы внешнего электроснабжения

Для предприятий средней или большой мощности возникает необходимость сооружения одной или нескольких ГПП (ПГВ). Схема присоединения ГПП к питающей линии показана на рис.9.1

При радиальном питании (тупиковая линия) глухое присоединение ВЛ к трансформатору через разъединитель или через разъединитель и короткозамыкатель при более значительном удалении ГППП от источника питания.

Рисунок 9.1 - Схема присоединения ГПП при радиальном питании

Перемычка между питающими линиями может применяться как при радиальном так и при магистральном присоединении ГПП.

Перемычка может быть как с автоматическим ее включением так и неавтоматическим. Она применяется в основном в тех случаях когда один из трансформаторов при послеаварийном режиме т.е. при отключении второго трансформатора, не позволяет полностью покрыть нагрузку потребителей I-II категорий.

Следует избегать применение перемычек на предприятиях с загрязненной средой так как большее число аппаратов и токоведущих частей повышает вероятность возникновения аварий.

9.2 Схемы внутриобъектного электроснабжения

При сооружении на предприятии ГПП, схему внутриобъектного электроснабжения принимаем одноступенчатой. При одноступенчатой схеме вся электроэнергия распределяется с шин ГПП по радиальной схеме.

В целом же выбор схемы внутреннего электроснабжения (схемы распределения) зависит от многих факторов в частности таких как: взаимное расположение ГПП, высоковольтных электроприемников, количества и мощности трансформаторов на цеховых подстанциях, возможных направлениях прохождения трасс и ряда других факторов.

Трансформаторы мощностью 1600 кВ×А при напряжении 6 кВ и 2500 кВ×А при напряжении 10 кВ рекомендуется подключать по радиальной схеме.

В целях более полного использования мощности выключателей при подключении к ним трансформаторов малой мощности (250-630 кВ×А) отходящих от РП, ГПП в разных направлениях допускается и рекомендуется подключать эти трансформаторы под один выключатель.

При разработке схемы распределения следует помнить о соответствующей категории надежности электроснабжения трансформаторных подстанций по которой выбирали количество и мощности трансформаторов на них и выбирать соответствующие схемы резервирования. Так двухтрансформаторные ТП необходимо подключать от разных секций ГПП. От разных же секций необходимо питать и однотрансформаторные подстанции одного цеха.

В Приложении 1 и 2 приведены генплан рассматриваемого в данном пособии предприятия с нанесенными подстанциями и кабельными трассами к ним и схема электроснабжения его.

При наличии на предприятии, значительной мощности потребителей с резкопеременной нагрузкой, существуют некоторые особенности разработки схемы на низшем напряжении ГПП.

Приемники с резко переменной нагрузкой подключаем к одному плечу сдвоенного реактора при двухобмоточных трансформаторах на ГПП.


10 ВЫБОР ЧИСЛА И МОЩНОСТИ ТРАНСФОРМАТОРОВ ГПП

В большинстве случаев на ГПП промышленных предприятий устанавливают два трансформатора. Однотрансформаторные ГПП применяют для предприятий, на которых отсутствуют потребители I категории и при наличии централизованного резерва трансформаторов. Установка трех трансформаторов на ГПП возможна и допустима в случаях электроснабжения потребителей с резкопеременной нагрузкой от отдельного трансформатора, если невозможно применить трансформаторы с расщепленными обмотками или сдвоенный реактор.

Выбор мощности трансформаторов ГПП производится на основании расчетной нагрузки предприятия Sp с учетом проведенной компенсации реактивной мощности.

Если на ГПП устанавливается два трансформатора, то расчетная мощность каждого из них определяется по условию:

Sр.т.@Sр/2×0,7 (10.1)

По получившейся расчетной мощности из ряда номинальных мощностей трансформаторов выбирают ближайшее стандартное значение мощности трансформатора и проверяют его на допустимую перегрузку в послеаварийном режиме при отключении одного из трансформаторов с учетом ограничения потребителей III категории.

1,4 ·Sн.т.³ Sp - SpIII  (10.2)

Для рассматриваемого завода:

С учётом отключения потребителей третьей категории:

1,4· 16000 ³ 16704,5-2710,64

14000 кВА ³ 8703 кВА

Выбираем трансформатор мощностью 16000 кВА

Наименование Uнн,кВ ∆Рхх,кВт ∆Ркз,кВт Uкз,% Iхх,%
ТДНС 16000/35 6,3 18 85 10 0,6

Проводим технико-экономический расчет.

Выбираем сдвоенный реактор:

Тип реактора:

РБСД – 10 – 2 ´ 1600 – 0,20 Номинальный ток 1600 А.


11 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАСЧЁТ

Технико-экономическое сравнение проводят по минимуму приведенных затрат, при этом в капитальных затратах учитывается стоимость трансформаторов и их монтаж, так как вся остальная схема электроснабжения мало чем будет отличаться в вариантах. В эксплуатационных затратах учитывают стоимость потерь электрической энергии и амортизационные отчисления.

Приведенные потери электроэнергии в трансформаторах определяют по формуле

Эn=n((DPxx+Kи.п.× DQxx)Tгод+Kз2(DPкз+Kи.п. DQк.з.)Tм), кВт×ч (11.1)

где n - количество трансформаторов;

DPxx - потери холостого хода трансформаторов, кВт.

DPкз - потери короткого замыкания трансформаторов, кВт.

Потери холостого хода и короткого замыкания реактивной мощности определяем по формулам:

DQxx= (11.2)

DQк.з= (11.3)

Kи.п = 0,05¸0,07кВт/квар - коэффициент изменения потерь активной мощности при передаче реактивной;

Kз - коэффициент загрузки трансформаторов;

 - принимается по справочным данным в зависимости от сменности работы предприятия.

Эn=2·((18 + 0,06·96)·8760 + 0,42·(85+0,06·1600)·4340)=655113,6 кВт×ч

DQxx=

DQк.з=

Стоимость потерь электроэнергии в трансформаторах вычисляется по выражению:

 (11.4)

где b= 2,89 тенге/кВт час – стоимость потерь электроэнергии

Таблица 11.1 – Капитальные затраты на оборудование

Наименование оборудования Стоим. единицы оборудования, тыс.тенге Первый вариант
Кол-во Общ. стоим.Тыс.тенге
ТДНС-16000 5375 2 10750
Монтаж 240,75 467,5

КåОБЩ

- - 11217,5

Капитальные затраты на основное оборудование состоят из стоимости трансформатора и монтажа:

Стоимость трансформатора - 2´ 5375 тыс. тг.

Монтаж - 2´240,75 тыс.тг

К = 10750 + 467,5=11217,5 тыс.тг.

Стоимость отчислений на амортизацию ремонт и обслуживание


 (11.5)

где  - норма амортизационных отчислений от капитальных затрат;

 – норма отчислений на обслуживание

К - сумма полученных капитальных затрат.

Определяем ежегодные эксплуатационные издержки:

Uэ = Cэ + Uа  (11.6)

Uэ = 18932,2 + 1043,23 = 3342,49 тыс. тг

Приведённые затраты вычисляются по формуле

 (11.7)

где  - нормативный коэффициент экономической эффективности.


12 РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

12.1 Расчёт токов короткого замыкания на стороне ВН

Расчет токов К.З. необходим для выбора и проверки коммутационных аппаратов по отключающей способности, на динамическую и термическую стойкость, на стойкость к токам К.З. кабельных линий и измерительных трансформаторов, для расчета токов срабатывания и коэффициентов чувствительности релейной защиты. При расчете токов К.З. на напряжении выше 1000В принимают следующие расчетные условия:

1.   Все источники участвующие в подпитке места К.З. работают одновременно и с номинальной нагрузкой.

2.   Все синхронные машины работают с АРВ и форсировкой возбуждения.

3.   При расчете токов К.З. учитывают влияние синхронных и асинхронных электродвигателей за исключением электродвигателей мощностью до 100 кВт если они отделены одной ступенью трансформации от места К.З. и электродвигателей любой мощности если отделены двумя и более трансформациями.

4.   В расчетной схеме точки КЗ выбирают такими в которых токи КЗ будут иметь максимальные значения, а элементы сети нормально работающие раздельно на схеме принимаются работающими через секционный выключатель.

В большинстве случаев такими точками являются: на вводах силового трансформатора - точка К1; за выключателем пассивного элемента на стороне НН ГПП (линия к ТП) - точка К2; на вводе цехового силового трансформатора от которого питается расчетный цех точка К3.

Составляем схему замещения.

Рисунок 12.1 – Схема замещения для расчета токов КЗ

Расчет ведем в относительных единицах, для чего принимаем базисные условия: ;

Технические данные трансформатора: ТДНС – 16000/35

; ;

Определяем базисные токи:

 (12.1)

Определяем сопротивления элементов схемы замещения:

-  энергосистемы

 (12.2)

,

где Sкз – мощность короткого замыкания

-  воздушной линии

 (12.3)

худ – удельное сопротивление воздушной линии;

l – длина линии.

-  трансформатора

 (12.4)

Точка К1:

Периодическая составляющая тока короткого замыкания

 (12.5)

где  - ЭДС энергосистемы

Амплитудное значение ударного тока короткого замыкания с учетом апериодической составляющей

 (12.6)

где Куд = 1,608 – ударный коэффициент – система, связанная со сборными шинами, где рассматривается КЗ, воздушными линиями напряжением 35 кВ (11, табл.3.8)

Точка К2:

Периодическая составляющая тока короткого замыкания

Амплитудное значение ударного тока короткого замыкания с учетом апериодической составляющей

где Куд = 1,956 – ударный коэффициент – ветви, защищенные реактором с номинальным током 1000 А и выше (11, табл.3.8)

12.2 Расчёт тока короткого замыкания на стороне 0,4 кВ

Сети промышленных предприятий напряжением до 1 кВ характеризуются большой протяженностью и наличием большого количества коммутационно-защитной аппаратуры. При напряжении до 1 кВ даже небольшое сопротивление оказывает существенное влияние на ток КЗ, поэтому в расчетах учитываются все сопротивления короткозамкнутой цепи, как индуктивной, так и активной. Кроме того, учитываются активные сопротивления всех переходных контактов этой цепи (разъемные контакты на шинах, на вводах и т.д.). Расчёт токов короткого замыкания на стороне 0,4 кВ производится в именованных единицах, т.е. все сопротивления выражаются в мОм. Если все эти сопротивления не известны, то согласно руководящих указаний по электроснабжению промышленных предприятий совокупно эти сопротивления берутся на шинах ТП – 15 мОм, на шинах РП – 20 мОм.

Составляем схему замещения

Рисунок 12.2 - Схема замещения для расчёта тока КЗ на стороне 0,4 кВ

Расстояние от ТП-5 до ГПП составляет 188м.

Выбираем кабель напряжением 6кВ сечением 95 мм2. Активное сопротивление кабеля rУД = 0,326 Ом/км, индуктивное хУД = 0,078 Ом/км.

Определяем сопротивление кабеля

-  активное  (12.7)

индуктивное

 (12.8)


Определяем результирующее сопротивление:

-  активное: Rрез = Rк = 1,222

-  индуктивное:

Хрез=Хс+Хл+Хт+Хр+Хк=0+2,36+10+0,2=12,56

Приводим результирующее сопротивление к стороне 0,4 кВ в мОм по формулам:

, (12.9)

где Uст.кз – напряжение ступени короткого замыкания.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


ИНТЕРЕСНОЕ



© 2009 Все права защищены.