| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ
| Курсовая работа: Проектирование системы электроснабжения завода станкостроения. Электроснабжение цеха обработки корпусных деталейСогласно ПУЭ 1.3.28 жесткие шины в пределах РУ всех напряжений выбираются по условию нагрева (по допустимому току). При этом учитываются не только нормальные, но и послеаварийные режимы. В закрытых РУ 6-10кВ ошиновка и сборные шины выполняются жесткими алюминиевыми шинами. Медные шины из-за их высокой стоимости не применяются даже при больших токовых нагрузках. При токах 3000А применяются одно- и двухполосные шины. Выбор шин производится по нагреву. В расчете примем
однополосные шины, так как Условия выбора:
где Рассчитываем токи:
Принимаем к установке однополосные алюминиевые шины с размерами (80х6) мм с допустимым током 1150 А. Определяем расчётные токи продолжительных режимов:
Для неизолированных
проводов и окрашенных шин принимаем
Условие выполняется: Проверку шин на термическую стойкость производим согласно условию:
где
Сечение проводника, отвечающее его термической стойкости определяем по формуле:
Где Находим расчетное сечение:
Условие соблюдается, следовательно сечение шины выбрано правильно и проходит по термической стойкости. Момент инерции:
Механический расчет однополосных шин. Определяем наибольшее удельное усилие при токе КЗ:
Равномерно распределенная сила создает изгибающий момент:
где Напряжение в материале шины, возникающее при воздействии изгибающего момента:
где Момент сопротивления шин при установке их вертикально:
Шины механически прочны, если соблюдается условие:
Условие механической прочности выполнено. К установке принимаем алюминиевые шины прямоугольного сечения (80×6) с длительно допустимым током 1150 А. 13.3 Выбор проводниковой продукции и аппаратуры на стороне 0,4 кВ Выбор автоматических выключателей Выбор автоматических выключателей производится по трём условиям: Uн ≥ Uуст; Iтр ≥ 1,15*Iнэ; (13.65) Iэр ≥ 1,25*Iпуск; (13.66) где Iтр – ток теплового расцепителя автоматического выключателя; Iэр – ток электромагнитного расцепителя автоматического выключателя; Iнэ – номинальный ток электроприёмника; Iпуск – пусковой ток электроприёмника.
Iпуск = Кп·Iнэ, (13.68) где Кп – коэффициент пуска Выбор магнитных пускателей Магнитные пускатели предназначены для частых пусков и дистанционного включения. Защищает от исчезновения и чрезмерного снижения напряжения, а также от перегрузки при наличии теплового реле. Выбор магнитных пускателей производится по току защитного элемента, по назначению и исполнению по степени защиты. Выбор проводниковой продукции Выбор проводниковой продукции производится по трём условиям: Uн ≥ Uуст; Iдоп ≥ Iдоп ≥ где Iз – ток защитного аппарата, для автомата – ток теплового расцепителя. Кз – коэффициент, учитывающий требует ли сеть защиты от прегрузки. Рассматриваем ШР - 1 Горизонтально-расточный станок
Iпуск = 7·29,6 = 207 А Iтр ≥ 1,15·29,6 = 34,1А Iэр≥ 1,25·207= 258,8А Выбираем выключатель: ВА13-29 Iтр=63А, Iэр=300А Выбираем магнитный пускатель: ПМЛ-323 Iн = 40А, реверсивный с тепловым реле, IP54 с кнопками «пуск» и «стоп». Тепловое реле РТЛ-80 Iн = 80А, пределы регулирования срабатывания 30-40А, максимальный ток продолжительности режима 40А. Выбор проводниковой продукции Так как сеть требует защиты от перегрузки, то проводники выбираем по следующему условию:
Кз =1,15. Температуру в помещении примем равной 20 градусов. Прокладка проводников будет проводиться открыто в трубах во избежание механических повреждений.
Кn=0,8 - Расстояние в свету 100мм. (13,табл. 1.3.26) Кt=1,07 При нормированной температуре жил 60С (13,табл. 1.3.3) Так как все приемники с ПВ=100%, то Кпв=1 Выбираем АПВ 1(3х35). Iдоп = 95А. От РУ 0,4кВ к РП:
Выбираем АВВГ 1(3х70+3х50). Iдоп = 140А. Выбор остальных элементов производится аналогично. Результаты расчета сведены в таблицу 10.9. Результаты расчёта и выбора заносим в таблицу 13.3.1
Примечание: способ прокладки – в трубе, Кпопр = 1, t=25C, длительный режим работы. 14 РАСЧЁТ МОЛНИЕЗАЩИТЫ Вероятность поражения какого-либо сооружения, не оборудованного молниезащитой, может оцениваться формулой:
Где Чтобы быть полностью защищенным объект должен находиться в зоне действия молниеотвода. Поверхность ограничивающая зону защиты стержневого молниеотвода может быть представлена ломанной линией. Отрезок ав – часть прямой
соединяющий вершину молниеотвода с точкой поверхности земли, удаленной на Отрезок вс – часть
прямой, соединяющей точку молниеотвода на высоте Радиус защиты на высоте
А на высоте
Зона защиты двумя молниеотводами имеет большие размеры, чем сумма защиты двух одиночных молниеотводов. Расчетная зона одиночного стержневого молниеотвода высотой представляет собой конус ОРУ располагаются на большой территории и их приходится защищать несколькими молниеотводами. Размеры ОРУ: 35х24х8,5. Предполагаем для защиты ОРУ использовать четыре молниеотвода, располагаемых по углам защищаемой территории. Задаемся высотой стержня
от земли
Радиус защиты на высоте
на высоте
на высоте
Строим конус образованный молниеотводами. На высоте равной 8,5м радиус защиты будет равен:
Как видно из нижеприведенного рисунка площадь перекрываемая молниеотводами, где вероятность поражения сведена к минимуму, перекрывает площадь ОРУ.
ЗАКЛЮЧЕНИЕВ настоящее время созданы методы расчета и проектирования цеховых сетей, выбора мощности трансформаторов, методика определения электрических нагрузок, выбора напряжений, сечений проводов и жил кабелей. Главной проблемой является создание рациональных систем электроснабжения промышленных предприятий. Созданию таких систем способствует: выбор и применение рационального числа трансформаций; выбор и применение рациональных напряжений, что дает значительную экономию в потерях электрической энергии; правильный выбор места размещения цеховых и главных распределительных и понизительных подстанций, что обеспечивает минимальные годовые приведенные затраты; дальнейшее совершенствование методики определения электрических нагрузок. Проведение расчета молниезащиты обеспечивает необходимую защиту электротехнического персонала при аварийных ситуациях. Рациональный выбор числа и мощности трансформаторов, а также схем электроснабжения и их параметров ведет к сокращению потерь электроэнергии, повышению надежности и способствует осуществлению общей задачи оптимизации построения систем электроснабжения. Общая задача оптимизации систем внутризаводского электроснабжения включает рациональные решения по выбору сечений проводов и жил кабелей, способов компенсации реактивной мощности, автоматизации и диспетчеризации и другие технические и экономические решения в системах электроснабжения. СПИСОК ЛИТЕРАТУРЫ1. Справочник по проектированию электроснабжения /Под редакцией Ю.Г.Барыбина –М:Энергоатомиздат 1990-576 с 2. Федоров А.А, Каменева В.В. Основы электроснабжения промышленных предприятий: Учебник для вузов –М: Энергия, 1979-408 с 3. Федоров А.А, Старкова Л.Е.Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий –М:Энергоатомиздат, 1987. 4. Кудрин Б.И., Прокопчик В.В. Электроснабжение промышленных предприятий. Учебное пособие для вузов. Минск: Высшая школа, 1988 – 357 с 5. Справочник по электроснабжению промышленных предприятий: Электрооборудование и автоматизация. Под редакцией А.А.Федорова и др. –М:Энергоиздат, 1981 6. Справочник по электроснабжению промышленных предприятий: Промышленные электрические сети. Под редакцией А.А.Федорова – М:Энергия, 1980 7. Справочник по электроснабжению промышленных предприятий. Под редакцией А.А.Федорова в 2-х книгах. М.Энергия, 1973 8. Электротехнический справочник в 3-х томах. Том 3 кн.1. Под общей редакцией профессоров МЭИ-М:Энергоатомиздат 1988 9. Электротехнический справочник Том 2. Под редакцией П.Г.Грудинского и др. М:Энергия 1975 10. Указания по проектированию компенсации реактивной мощности в электрических сетях промышленных предприятий, М:Тяжпромэлектропроект 1984. 11. «Электрооборудование станций и подстанций» Рожкова Л.Д., Козулин В.С., М. Энергоатомиздат, 1987. 12. Методические указания по проектированию СЭС 13. Правила устройства электроустановок |
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
© 2009 Все права защищены. |