рефераты бесплатно
 

МЕНЮ


Реферат: Соединения деталей и узлов машин


10. Шлицевые соединения

Шлицевые соединения (в соответстивии с  рисунком 10) условно можно рассматривать как многошпоночное, у которого шпонки выполнены как одно целое с валом. Шпоночные и зубчатые соединения служат для закрепления деталей на осях и валах. Такими деталями являются шкивы, зубчатые колеса, муфты, маховики, кулачки и т. д.

9,22   

Рисунок 10 – Детали (а) и шлицевое соединение (б): 1- вал; 2 – втулка (ступица)

Соединения обеспе­чивают жесткое фиксирование деталей в окружном направлении и допускают их взаимные осевые перемещения (подвиж­ные соединения).

По форме поперечного, сечения разли­чают три типа соединений: прямобочные ГОСТ 1139-80; эвольвентные ГОСТ6033-80; треугольные (изготовляются по отраслевым стандартам).

Соединения с прямобочными зубьями распространены в машино­строении. В зависимости от числа зубьев (z=6?20) и их высоты ГОСТ 1139-80 предусматривает три серии соединений для валов с внешним диаметром от 14 до 125 мм.

9,24

Рисунок 11 – Шлицевые соединения с эвольвентными (а) и треугольными (б) зубьями

При переходе от легкой к тяжелой серии при неизменном внутреннем диа­метре зубьев увеличиваются их число, внешний диаметр и, как следствие, на­грузочная способность.

Центрирование, т. е. соосное положение соединяемых деталей, осуществляют: по внешнему (в соответстивии с  рисунком 11, а) или внутреннему (в соответстивии с  рисунком 11, б) диаметру зубьев, а также по боковым поверхностям зубьев.

Для первых двух типов центрирования соединения имеют минимальные зазоры по поверхностям диаметров D и d соответ­ственно и ограниченный зазор по боковым сторонам. По нецентрирующему диаметру предусмотрен значительный зазор. При третьем типе центрирования  минимальный зазор устанавливают по боковым сторонам зубьев и значительные зазоры по поверх­ностям диаметров D и d. Стандартом предусмотрены три формы исполнения зубьев вала и одна­ для впадин втулки.

Центрирование по внешнему диаметру зубьев технологически наиболее простое и экономичное, так как центрирующие поверхности допускают точную и произ­водительную обработку. Такое центрирование применяют в основном для неподвижных соединений.

Рекомендуемые посадки по ширине b при центрировании по наружному диаметру: F8/f7, F8/f8, F8/js7 и др.

Центрирующие по­верхности вала шлифуют, обеспечивая наиболее высокую точность центрирова­ния. Такое центрирование используют обычно в подвижных соединениях: Реко­мендуют следующие посадки по центри­рующему диаметру d: H7/f7, H7/g6, Н7/ js7 и др.

Центрирование по боковым сторонам зубьев применяют сравнительно редко, лишь в соединениях, подверженных ревер­сивным динамическим нагрузкам. Оно не обеспечивает соосности вала и ступицы, хотя имеет высокую нагрузочную спо­собность. Рекомендуемые посадки по ширине b: F8/js7, D9/e8. D9/f8 и др.

Соединения с эвольвентными шлицами более технологичны, чем прямобочные шлицевые соединения. Для обработки валов с эвольвентными шлицами требуется мень­ший комплект более простого инструмента и используется совершенная технология зубообработки.

Соединения имеют более высокую точ­ность и прочность благодаря большей пло­щади контакта, большему числу зубьев и скруглению впадин, снижающему кон­центрацию напряжений. В cвязи с этим области применения соединений непрерыв­но расширяются. Их центрирование выпол­няют обычно по боковым поверхностям зубьев. Рекомендуемые посадки: 7H/7h, 7Н/9r, 7Н/8р - для неподвижных соединений и 9H/9f, 9H/9g, 11H/l0d - для подвиж­ных соединений.

В отличие от зубчатых колес угол про­филя (α=30°) увеличен, а высота зуба уменьшена (h=m).

По ГОСТ 603З-80 размерный ряд охва­тывает эвольвентные шлицевые соедине­ния с модулями m=0,5?10 мм, наруж­ными диаметрами D =4?500 мм и чис­лами зубьев z=6?82.

При использовании прямобочных и эвольвентных соединений для направления осевого перемещения деталей, посаженных на вал (например, зубчатых колес в короб­ках передач), твердость поверхности зубьев повышают до 54-60 HRC для уменьшения изно­са.

Соединения с треугольными зубьями применяют преимущественно для неподвижных соединений при тонкостенных втулках, а также в сое­динениях стальных валов со ступицами из легких сплавов, в приборостроении. Они позволяют координировать положение ва­ла и втулки в пределах малых углов. По рекомендации СЭВ (РС 656-66) угол профиля β=60° при номинальных диа­метрах до 60 мм. Кроме таких соеди­нений, в машиностроении по отраслевым стандартам изготовляют соединения с дру­гими углами профиля (72°, 90° и др.) и D=5?75 мм.

В быстроходных передачах авиацион­ные и автомобильные коробки передачи т. п. точность центрирования шлицевых соединений часто недостаточна. Для ее по­вышения центрирование осуществляют по вспомогательным поверхностям (коническим, цилиндрическим, а иногда отказываются от применения соединений и колеса изготовляют как одно целое с валом.

9,25

Рисунок 12 – Центрирования деталей шлицевого соединения по конической и цилиндрической дополнительным поверхностям

Проектирование и расчет соединений. Основные размеры  шлицевого соединения задают при конструировании вала. Длину соеди­нения принимают не более 1,5D; при большей длине существенно возрастает нерав­номерность распределения нагрузки вдоль зубьев и трудоемкость изготовления. Учитывая, что соединения в машинах выходят из строя преимущественно из-за повреждения рабочих поверхностей зубьев и усталостного разруше­ния шлицевых валов, после проектирова­ния выполняют проверочный расчет зубьев.

9,26

Рисунок 13 – Расчётная схема зуба шлицевого соединения

Условие прочности по допускаемым на­пряжениям смятия имеет вид

где dm - средний диаметр соединения; z - ­число зубьев; h и l - соответственно высо­та и длина поверхности контакта зубьев; ψ - коэффициент, учитывающий нерав­номерное распределение нагрузки между зубьями и вдоль зубьев (ψ=0,5?0,7); [σсм] - допускаемое напряжение смятия на боковых поверхностях.

Для соединения с эвольвентными зубья­ми принимают: [σсм] =0,2σв ­для неподвижных соединений с химико­-термической обработкой зубьев;

[σсм] =0,lσв - то же для подвижных сое­динений. Для соединений с зубьями без химико-термической обработки зна­чения [σсм] снижают вдвое. Высота и длина поверхности контакта: для прямобочных зубьев

;    ;

для эвольвентных зубьев h=m; dm=mz, где m – модуль зубьев.

Шлицевым соединениям присуща высо­кая концентрация нагрузки, обусловленная погрешностями изготовле­ния, смещениями осей деталей под нагруз­кой, закручиванием деталей. Лишь в идеально точном соединении при дейст­вии вращающего момента Т нагрузка между зубьями распределена равномерно

; где I – номер зуба.

При совместном действии момента и радиальной силы F, нагрузка между зубьями будет распределяться неравно­мерно

   и  

В реальных соединениях имеются погрешности в угловом шаге зубьев вала и втулки, а также радиальные зазоры, ко­торые приводят к существенно неравно­мерному распределению нагрузки в ок­ружном направлении и циклическому взаимному смещению деталей в осевом направлении, изнашиванию зубьев и раз­витию контактной коррозии.

В приближенном расчете концентрацию нагрузки учитывают общим коэффициен­том ψ. Для улучшения распределения нагрузки и повышения долговечности соединений повышают точность изготовления, совершенствуют формы деталей и выполняют ряд других мероприя­тий.  

         11 Штифтовые соединения

                   Штифтовые соединения применяют при небольших нагрузках преимущественно в приборостроении. Соединяемые детали сопрягаются при этом по переходным посадкам.

Рисунок 14 – Штифтовые соединения

Для исключения выпадения в процессе работы используют штифты: с насеченными канавками, вальцованные, резьбовые. Часто для этих же целей произ­водят разведение концов штифтов.

9,31

Рисунок 15 – Штифты (а – гладкие, б – с канавками, в – с резьбовым концом, г – разводной конический)

Основные типы штифтов стандартизо­ваны. Их изготовляют из углеродистых сталей 30, 45, 50 и др.

По характеру работы штифтовое соеди­нение подобно заклепочному (работает на срез и смятие). Для расчета соединения используют те же зависимости. Условие прочности при срезе радиального штифта,

а условие прочности по смятию

где Ft - срезающая сила (осевая или окружная); i - число поверхностей среза; Ас=πd2/ 4 - площадь штифта при срезе; Асм=d(D-d1) - площадь поверхности смятия (сжатия); [τc]=70?80 МПа­ - допускаемое напряжение при срезе; [σсм] =200?300 МПа - допускаемое напряжение при смятии.

Срезающая сила при передаче вра­щающего момента Ft=2T/d1.

Штифты диаметром d=(0,1?0,15)dв и длиной l=(3?4)dв (dв - диаметр вала) устанавливают по посадке с натягом Н7/r6 в отверстия, совместно просверленные и развернутые при сборке в валу и ступице по стыку посадочных поверхностей.

9,32

Рисунок 16 – Схемы к расчёту соединений радиальным (а) и осевым (б) штифтами

Многоштифтовые соединения этого типа по прочности близки к шлицевым.


12. Шпоночные соединения

Соединения двух со­осных цилиндрических деталей для передачи вращения между ними осуществляется с помощью шпонки 1 (в соответстивии с  рисунком 17, а), специальной детали, за­кладываемой в пазы соединяемых вала 2 и ступицы 3.

9,20

Рисунок 17 – Шпоночные соединения

В машиностроении применяют не­напряженные (без нагрузки) соеди­нения (с помощью призматических и сег­ментных шпонок (в соответстивии с  рисунком 17, б и в), и напряженные соединения (с помощью клиновых шпонок (в соответстивии с  рисунком 17, г)). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360-78, ГОСТ 24071-80 и ГОСТ 24068-80.

Основные достоинства соединений со­стоят в простоте конструкции и возмож­ности жесткой фиксации насаживаемой детали в окружном направлении.

Однако соединения трудоемки в изго­товлении, требуют ручной пригонки или подбора. Это ограничивает использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровра­щающихся валов ответственного назначе­ния из-за сложности обеспечения концент­ричной посадки сопрягаемых деталей.

Шпоночные соединения применяют преимущественно в тех случаях, когда посадку с натягом не удается реализовать по условиям прочности или технологическим возможностям.

Соединения призматическими шпонка­ми. Применяются в конструкциях наиболее широко, так как просты в изготовлении и имеют сравнительно небольшую глубину врезания в вал.

Шпонки имеют прямоугольное сечение с отношением высоты к ширине от 1 (для валов диаметром до 22 мм) до 0,5 (для валов больших диа­метров). Их устанавливают с натягом в пазы валов. Рабочими у шпонок являют­ся боковые узкие грани. В радиальном направлении предусмотрен зазор, В ответ­ственных соединениях сопряжение дна па­за с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок - чистотянутая сталь 45 или сталь Ст6 с пределом прочности σв =590?750 МПа.

Если принять для упрощения, что напря­жения в зоне контакта распределены рав­номерно, и плечо рав­нодействующей этих напряжений равно 0,5d (где d - диаметр вала), то средние контактные напряжения (напряжения смя­тия, вызывающие смятие рабочих граней)

 

где Т - вращающий момент; lр - рабочая длина шпонки; t2=0,4h - ­глубина врезания шпонки в ступицу;  - допускаемое напряжение на смя­тие.

На практике сечение шпонки подбирают по ГОСТ 23360-78 в зависимости от диа­метра вала, а длину l шпонки назначают на 5-10 мм меньше длины ступицы. Затем по формуле (1) оценивают прочность соединения на смятие или вычисляют пре­дельный момент, соответствующий напря­жению .

Рабочая длина шпонки lp=l-b может быть определена из очевидного соотношения.

.

Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стан­дартных сечений шпонок и рекомендуемых значений .

Если условие прочности не выпол­няется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°.

Соединения характеризуются сущест­венно неравномерным распределением нагрузки и напряжений как по высоте сечения, так и по длине шпонки. Это вызывает упругопласти­ческое смятие рабочих граней пазов и шпонки, закручивание ее, особенно при на­личии зазора между валом и ступицей. Поэтому длину шпоночных соединений ог­раничивают (l≤1,5d), а посадку зубча­тых колес, шкивов, полумуфт и других деталей на валы осуществляют с натягом (посадки Н7/р6; Н7/r6; H7/s7; H7/k6 и т. п.).

В этом случае шпоночные соединения по существу выключаются из работы и оказы­ваются резервными, а шпонки обеспечи­вают лишь жесткую фиксацию в окружном направлении насаживаемых деталей.

Соединения сегментными шпонками. Сегментные шпонки имеют более глубокую посадку и не пере­кашиваются под нагрузкой, они не требуют ручной пригонки. Однако глубокий паз су­щественно ослабляет вал, поэтому сег­ментные шпонки используют преимущест­венно для закрепления деталей на мало­нагруженных участках вала (например, на входных или выходных хвостовиках валов).

Расчет соединений с сегментными шпон­ками также производят по формуле, принимая t2=h-t1. До­пускаемые напряжения смятия  при постоянной нагрузке в соединении сталь­ного вала и шпонки из чистотянутой стали (σв=500?600 МПа) в зависимости от материала ступицы можно выбирать следующими: 150-180 МПа - для ступиц из стали; 80-100 МПа - из чугуна и алю­миния; 15-25 МПа - из текстолита и древопластика.

Большие значения принимают при лег­ком режиме работы (переменная нагрузка не больше 5% от постоянной), а мень­шие - при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами).


13. Резьба

 

Резьба - выступы, образованные на основной поверхности винтов или гаек и расположенные по винтовой линии. Резьбовое соединение образуется двумя (реже тремя) деталями. У одной из них на наружной, а у другой на внутренней поверхности имеются расположенные по винтовой поверхности выступы – соответственно наружная и внутренняя резьба (в соответстивии с  рисунком 18).

По форме основной поверхности различают цилиндрические и конические резьбы. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений труб, масленок, пробок и т. п.

Профиль резьбы — контур сечения резьбы в плоскости, проходящей через ось основной поверхности. По форме профиля различают треугольные, прямоугольные, тра­пецеидальные, круглые и другие резьбы.

По направлению винтовой линии различают правую и левую резьбы. У правой резьбы винтовая линия идет слева направо и вверх, у левой — справа налево и вверх. Наиболее рас­пространена правая резьба. Левую резьбу применяют только в специальных случаях.

Если витки резьбы расположены по двум или нескольким параллельным вин­товым линиям, то они образуют многозаходную резьбу. По числу захода раз­личают однозаходную, двухзаходную и т. д. резьбы. Наиболее распространена однозаходная резьба. Все крепежные ре­зьбы однозаходные. Многозаходные резь­бы применяются преимущественно в винтовых механизмах. Число заходов больше трех применяют редко.

8,1

Рисунок 18 – Резьбовое соединение с метрической резьбой

Методы изготовления резьбы

 1. Нарезкой вручную мет­чиками или плашками. Способ малопроизводительный. Его применяют в индивидуальном производстве и при ремонтных работах.

 2.   Нарезкой на токарно-винторезных или специальных станках.

 3.   Фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т.д.).

  4.   Накаткой на специальных резьбонакатных станках-автоматах. Этим высокопроизводительным и дешёвым способом изготовляют большинство резьб стандартных  крепёжных деталей (болты, винты и т.д.). Накатка существенно упрочняет резьбовые детали.

  5.   Литьём на деталях из стекла, пластмассы, металлокерамики и др.

  6. Выдавливанием на тонкостенных давленных и штампованных изделиях из жести, пластмассы и т.д.

Наибольшее распространение в машино­- и приборостроении имеет метрическая резьба по ГОСТ 8724-81 с крупными мелким шагами. Она обозна­чается буквой М и цифрами, показывающими наружный диаметр резь­бы (например, резьба, имеющая d=24 мм, обозначается М24), в обозначении резьбы с мелким шагом, кроме диаметра, в форме сомножителя указывается ее шаг (например, М24?1,5 для резьбы, имеющей d=24 мм и Р=1,5 мм). Области примене­ния других типов резьб ограничены спе­циальными конструкциями.

Крепежные детали и типы соединений. Наибольшее распространение среди резь­бовых деталей получили крепежные болты, винты, шпильки, гайки и вставки. С помощью этих деталей образуют большинство разъемных соединении в конструкциях.

8,3

Рисунок 19 – Основные типы резьбовых соединений

Болт (в соответстивии с  рисунком 19, а) и винт (в соответстивии с  рисунком 19, б) – стержень с головкой и одним резьбовым концом. Шпилька (рисунок 19, в) имеет два резьбовых конца. Вставка (в соответстивии с  рисунком 19, г). Винт с резьбовой втулкой (в соответстивии с  рисунком 19, д).

Выбор типа соединения определяется проч­ностью материала соединяемых деталей, частотой сборки и разборки соединения в эксплуатации, а также особенностями конструкции и технологии изготовления соединяемых деталей.

Соединения болтом применяют только при наличии доступа к гайке и головке болта для скрепления деталей сравнитель­но небольшой толщины (например, при наличии специальных поясков или флан­цев), а также при многократной раз­борке и сборке соединений. В последнем случае (особенно при большой толщине соединяемых деталей) предпочтение отда­ется также соединениям винтом или шпилькой.

Соединения винтом и шпилькой при­меняют для скрепления деталей при нали­чии доступа монтажного инструмента лишь с одной стороны (к гайке). Область применения соединений винтом в силовых конструкциях ограничена, пред­почтение отдается соединениям шпилькой. Шпильки фиксируют (стопорят) в корпусной детали (посадкой на резьбе с натя­гом, завинчиванием на сбег резьбы, с помощью клея и т. д.) для предотвра­щения вывинчивания их при отвинчивании гаек.

Вставки применяют в основном для по­вышения износостойкости резьбы в корпу­сах из материалов с невысокой проч­ностью, а также для повышения прочности соединений.

Резьбовые втулки используют преиму­щественно в корпусах из композиционных материалов.

Для предотвращения повреждения по­верхностей соединяемых деталей при за­винчивании гаек под них подкладывают шайбы.

 Конструктивным разнообразием отли­чаются стержни болтов (винтов). Наряду с обычной (в соответстивии с  рисунком 20), наиболее распростра­ненной формой болта (а) приме­няют другие конструкции. Болт (б) в отличие от предыдущего имеет диаметр стержня несколько больше наруж­ного диаметра резьбы. Такие болты уста­навливают в отверстия корпусов без за­зора. В ряде ответственных соединений для увеличения податливости при меняют полые болты (в). Болты на (г и д) имеют центрирующие пояски под головками, а поясок посередине (д) предназначен для гашения виб­раций стержня.

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.