| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ
| Курсовая работа: Системы теплоснабжения станкостроительного завода от котельной4. Тепловой расчёт тепловых сетей промпредприятия
1) Объем всей сети: Определяем объём внутреннего трубопровода:
Определяем суммарный объём участков и ответвлений:
2) Расход утечек:
3) Потери от утечек:
где
4.2 Расчёт толщины изоляции при надземной прокладке трубопроводовРассмотрим участок Г – 5: Длина участка Г-5 Определяется средняя температура теплоизоляционного слоя: - подающего трубопровода - обратного трубопровода 1. Определяем теплопроводность теплоизоляционного материала: - для подающего трубопровода: - для обратного трубопровода:
По табл. 14 выбирается
нормированная плотность теплового потока для подающего трубопровода 2. Предварительно определяется наружный диаметр теплоизоляционного слоя: - подающего трубопровода - обратного трубопровода 3. Тогда размеры канала составят: - ширина - высота - эквивалентный диаметр По табл. 12 выбирается
коэффициент теплопроводности для маловлажного грунта 4. Вычисляется термическое сопротивление теплоотдаче от воздуха внутри канала к внутренней стенке канала по формуле (18) 5. Определяется термическое сопротивление грунта по формуле (19) 6. Рассчитывается по формуле (22) температура воздуха в канале
7. По формулам (23)-(24) определяются величины В: - для подающего трубопровода откуда - для обратного трубопровода откуда 8. По формуле (4) определяется толщина теплоизоляционного слоя: - для подающего трубопровода - для обратного трубопровода Согласно табл. 7
принимается толщина теплоизоляционного слоя для подающего трубопровода 4.3 Расчёт потерь тепла через теплоизоляционную конструкциюРасчёт участка Г-5. Длина участка l=350 м. Температура теплоносителя в
начале участка в подающей линии 1. Определяется средняя температура теплоизоляционного слоя для: - подающего трубопровода - обратного трубопровода 2. Рассчитывается по формуле (16) коэффициент теплопроводности теплоизоляционного материала: - для подающего трубопровода - для обратного трубопровода 3. Вычисляются диаметры теплоизоляционной конструкции: - подающего трубопровода - обратного трубопровода По табл. 12 для заданного диаметра трубопроводов определяются минимальные расстояния в свету между строительными конструкциями и трубопроводами: а=80 мм; b=140 мм; с=50 мм; d=150 мм. 4. Рассчитываются размеры поперечного сечения канала: высота ширина По табл. 13 выбирается
стандартный железобетонный короб с поперечным сечением 5. По формуле (11) определяется термическое сопротивление: - подающего трубопровода
обратного трубопровода 6.
По формуле (18)
вычисляется сопротивление теплоотдаче от воздуха внутри канала к внутренней
стенке канала 7.
Определяется
термическое сопротивление грунта 8. Рассчитывается температура воздуха в канале по формуле (25) 9. Вычисляются по формулам (27)-(28) удельные потери тепла: - подающего трубопровода - обратного трубопровода 10. Суммарные потери тепла на расчетном участке тепловой сети 11. Тепловые потери на участке подающей линии 12. Температура теплоносителя в конце расчетного участка определяется по формуле (14): 13. Тепловые потери на участке обратной линии
Расчет остальных участков производится аналогично. Результаты расчетов представлены в таблице 12. Таким образом, суммарные
потери через изоляцию Таблица 12 Результаты теплового расчета тепловой сети при прокладке трубопроводов в непроходных каналах.
5. Расчёт тепловой схемы котельной с паровыми и водогрейными котлами 5.1 Исходные данныеКотельная предназначена для централизованного теплоснабжения промышленного комплекса, а именно систем отопления, вентиляции, горячего водоснабжения и пароснабжения промышленных предприятий. Технологическим потребителям отпускается пар с параметрами: p=0,8 МПа, t=175 оС в количестве Dт=14,76 т/ч Расчетные нагрузки отопления и вентиляции Qо=5604 кВт, Qв=8787,6кВт. Нагрузка горячего водоснабжения Qт=9264 кВт. Температурный график отопительной тепловой сети – 150/70 оС. Подогрев сырой воды перед химводоочисткой производится до 20 оС. Деаэрация питательной и подпиточной воды осуществляется в атмосферных деаэраторах при температуре 104 оС, питательная вода имеет температуру 104 оС, подпиточная – 70 оС. Величина непрерывной продувки котлов pпр=4% паропроизводительности котельной. Коэффициент возврата конденсата от технологических потребителей φ=65%, его температура tвк=85 оС. Котельная работает на мазуте. Возврат конденсата греющего пара с мазутного хозяйства φм.х.=80%, его температура tвкм.х.=60 оС. Расчет выполнен для максимально-зимнего периода. 5.2 Расчёт водогрейной части котельной.1. 1.Общая тепловая нагрузка водогрейной части котельной по внешним потребителям. Утечки в тепловых сетях где
где
где
Для промышленных
предприятий
Объем воды во внутренних трубопроводах
Объем воды в трубопроводах теплосетей Утечки в тепловых сетях составят: Потери тепла с утечкой сетевой воды:
где
Тогда потери тепла с утечками: 2. Расход сетевой воды на максимально зимнем режиме. 3. Расход подпиточной воды. 4. Расход воды на рециркуляцию определяется из условия обеспечения на выходе из котла t1к=70оС. На максимально зимнем режиме τ1=150 оС=t11к, следовательно, Gрец=0. 5. Расход сетевой воды, поступающей в котел из обратной линии сети. 6. Расход воды через котел. 7. Проверка расхода сетевой воды на выходе из котельной. 8. Тепловая производительность водогрейных котлов. Данная производительность можно обеспечить четырьмя водогрейными котлами КВ-ГМ4,65 теплопроизводительность 4,65 МВт номинальный расход воды Gном=49,5 т/ч 10.Проверка расхода воды через котел.
для данного типа котлов, следовательно для обеспечения номинального расхода воды через котлы следует увеличить расход по линии рециркуляции на величину 11.Температура воды на входе в котел. 5.2 Расчёт паровой части котельнойПредварительная оценка суммарной производительности паровых котлов с учетом расхода пара на собственные нужды (деаэраторы, подогреватели) и мазутное хозяйство, а также потерь внутри котельной.
Уточнение расхода пара на мазутное хозяйство котельной (паровые и водогрейные котлы) - расход пара на разогрев
мазута для паровых котлов; здесь - расход пара на разогрев
мазута для водогрейных котлов; здесь Уточненная оценка паропроизводительности котельной с учетом 3% потерь внутри котельной. Расчет узла непрерывной продувки. количество воды, удаляемое из котла с продувкой Количество пара образующегося в сепараторе непрерывной продувки. здесь h’пр. – энтальпия продувочной воды на входе в расширитель – сепаратор (в барабане котла) h’’пр. – энтальпия продувочной воды на выходе из расширителя Количество продувочной воды, выходящей из расширителя. Расход химочищенной воды, восполняющей потери теплоносителей Потери конденсата.
Расход сырой воды. Температура сырой воды после охладителя продувки. Расход пара на пароводяной подогреватель сырой воды Температура химочищенной воды, поступающей в деаэратор подпиточной воды (после охладителя подпитки) Принимаем как 10% от Gподп Расход пара на деаэратор подпиточной воды С учетом количества пара, идущего на подогрев воды, фактический расход химочищенной воды, поступающей в подпиточный деаэратор. уточняем Расход пара на пароводяной подогреватель химочищенной воды.
- расход химочищенной воды, поступающей в деаэратор. Суммарное количество воды и пара, поступающих в деаэратор питательной воды, за исключением греющего пара: Средняя температура поступивших потоков: Расход пара на деаэратор питательной воды: Суммарный расход пара на собственные нужды котельной: Паропроизводительность котельной с учетом внутренних потерь: Проверка расчета: Проведенный расчет показывает, что данная котельная может быть укомплектована тремя паровыми котлами ДЕ-6,5-14 и четырьмя водогрейными КВ-ГМ 4,65. 5.3 Расчёт водоводяного подогревателяК расчету принимаем водоводяной охладитель подпиточной воды в котельной и производим его поверочной расчет. Исходными данными к расчету являются: - температуры нагреваемой химически очищенной воды на входе и выходе:
- температуры охлаждения подпиточной воды на входе и выходе:
1.Тепловая мощность теплообменника:
2.Средний по поверхности температурный напор: -средняя температура подпиточной воды, которая движется в межтрубном пространстве; - средняя температура химически очищенной воды, которая движется в трубах. 3.Необходимая поверхность
теплообмена при ориентировочно принимаемом значении коэффициента теплопередачи 4. Площадь сечения трубок при принятой скорости в трубках wтр=1,5м/с:
Где 5. Площадь сечения межтрубного пространства при принятой скорости wм.тр =0,5м/с:
Теперь делаем выбор теплообменника. Ближайшим подходящим будет водяной подогреватель типоразмера ОСТ 34-588-68-04, имеющий следующие параметры: - поверхность теплообмена – F=1,31 м2; - диаметр корпуса – Dн/Dвн=76/69 мм/мм; - диаметр трубок - dн/dвн=16/14 мм/мм; - число трубок в одной секции – n =7 шт; - площадь сечения трубок – Fтр =0,00108 м2; - площадь сечения межтрубного пространства – Fм.тр=0,00233 м2; - эквивалентный диаметр межтрубного пространства – dэкв=16,4 мм. Поверочный расчет теплообменника: 1.Скорость водя в трубках и между трубками:
2. Коэффициент теплоотдачи:
- при - при
3. Расчетный коэффициент теплопередачи:
4.Температурный напор в противоточной схеме:
5.Необходимая расчетная поверхность теплообмена: 6.Выбранный теплообменник имеет запас поверхности:
что является приемлемым результатом, поскольку не превышает допустимых 15-20% запаса поверхности. Заключение Годовой расход тепла станкостроительным заводом составил 304625,1 ГДж/год. Для покрытия тепловых нагрузок отопления, вентиляции, горячего водоснабжения и технологических нагрузок спроектирована котельная. Котельная укомплектована тремя паровыми котлами ДЕ-6,5-14 и четырьмя водогрейными КВ-ГМ 4,65. Выбран водоводяной подогреватель. Поверочный расчёт теплообменника показал, что он подходит для данных условий эксплуатации. Рассмотрен вопрос регулирования тепловых нагрузок, что обеспечивает комфортные условия работы персонала предприятия, сокращает перерасход тепловой энергии и топлива. Производится качественное централизованное регулирование. Для цеха №8 (цех с большими тепловыделениями) осуществляется местное количественное подрегулирование. Проведенный гидравлический расчет позволил выбрать необходимые для рассчитанных расходов теплоносителей диаметры труб магистральных трубопроводов и ответвлений. Тепловой расчет сетей позволил определить потери тепла через теплоизоляционные конструкции. Список используемой литературы 1. Расчет тепловых нагрузок промышленного предприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика" 2. Регулирование централизованного теплоснабжения промпредприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика" 3. Гидравлический расчет тепловых сетей: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика" 4. Тепловой расчет тепловых сетей промпредприятия: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика" 5. Тепловые схемы центральной котельной, их расчет и выбор оборудования: Методические указания к курсовому и дипломному проектированию для студентов дневной формы обучения специальности 100700- "Промышленная теплоэнергетика". 6. Соколов Е. Я. Теплофикация и тепловые сети: Учебник для вузов. – 7-е изд., стереот. – М.: Издательство МЭИ, 2001. – 472 с.: ил Приложение |
© 2009 Все права защищены. |