рефераты бесплатно
 

МЕНЮ


Дипломная работа: Проект электрокотельной ИГТУ

Количество электротравм в общем числе несчастных случаев невелико, до 1,5%. Для электроустановок напряжением до 1000 U количество электротравм достигает 80%, в связи с их повсеместной распространённостью.

Причины электротравм.

Человек дистанционно не может определить находится ли установка под напряжением или нет. Ток, который протекает через тело человека, действует на организм не только в местах контакта и по пути протекания тока, но и на такие системы как кровеносная, дыхательная и сердечно-сосудистая.

Возможность получения электротравм имеет место не только при прикосновении, но и через напряжение шага и через электрическую дугу.

Электрический ток, проходя через тело человека оказывает термическое воздействие, котороеое приводит к отекам (от покраснения, до обугливания), электролитическое (химическое), механическое, которое может привести к разрыву тканей и мышц, поэтому все электротравмы делятся на местные; и общие (электроудары).

Приведём предельно допустимые уровни (ПДУ) для напряжения и тока . ПУЭ, ГОСТ 12.1.030-81

Таблица.6.3. ПДУ тока и напряжения.

Род и частота тока Норм. вел. ПДУ, при t, с
0,01 - 0,08 свыше 1

Переменный

f = 50 Гц

650 В

36 В

6 мА

Переменный

f = 400 Гц

650 В

36 В

6 мА

Постоянный

650 В

40 В

15 мА


Электрокотельное отделения, где установлены основное оборудование 6 кВ, относиться к классу особо опасных помещений по степени возможности поражения людей электрическим током, так как является помещением с относительной влажностью. Также имеется опасность одновременного прикосновения людей к любым металлическим частям (трубопроводы, металлические и бетонные полы) и одновременно к корпусу электрооборудования.

Мероприятия по борьбе с электротравматизмом.

1)  для защиты людей от поражения электрическим током выполняется изоляция токоведущих частей, находящихся под напряжением, с помощью различных диэлектрических материалов (пластмасса, резина, поливенилхлорид и т.д.)

2)  для защиты людей применяется ограждение, блокировки и сигнализация.

Ограждения – обеспечивает недоступность токоведущих частей может быть; сплошная (ячейки) и сетчатые; стационарные и съемные.

Блокировки – для предотвращения коммуникаций электрооборудования под нагрузкой.

Сигнализация – световая, звуковая – для предупреждения персонала о возможности поражения электрическим током.

Технические средства защиты.

1)  малое напряжение (12В,36В,50В) – применяется в переносных светильниках, ручном электрооборудовании.

2)  Электрическое разделение длинных сетей на участки с целью увеличения сопротивления участка сети, а, следовательно, уменьшения тока прикосновения.

3)  Двойная изоляция – дополнительная изоляция, защищающая человека при повреждении.

4)  Защита от статического электричества, которое может привести к пожарам и взрывам. Для ликвидации статического электричества применяются следующие меры;

-. Нейтрализация зарядов;

-. Отвод зарядов заземляющими устройствами;

-. Повышение влажности воздуха;

-. Добавка антистатических веществ в нефтепродукты;

-. Отвод зарядов, накапливающихся на людях

(заземление, токопроводящие полы, С.И.З.)

5)  Защитное заземление – преднамеренное соединение с землей металлических частей электроустановок с целью обеспечения безопасности.

6)  Защитное зануление – преднамеренное соединение с нулевым защитным проводником металлических проводящих частей, которые могут оказаться под напряжением.

7)  Защитное отключение – быстродействующая система защиты, автоматически обеспечивающая отключение электроустановки при возникновении в ней опасности поражения электрическим током.

8)  Электрозащитные устройства – переносимые и перевозимые изделия, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от действия дуги и электромагнитного поля.

9)  Защитная сигнализация и блокировка.

10)  Индивидуальные средства защиты.

11)  Знаки и плакаты безопасности.

Электрозащитные средства.

Основные электрозащитные средства выше 1000 В.

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, указатели напряжения для фазировки. Изолирующие устройства и приспособления для работ на ВЛ с непосредственным прикосновением электромонтёра к токоведущим частям.

Дополнительные электрозащитные средства выше 1000 В.

Диэлектрические перчатки, диэлектрические боты, диэлектрические ковры, индивидуальные экранирующие комплекты, изолирующие подставки и накладки, диэлектрические колпаки, переносные заземления, оградительные устройства, плакаты и знаки безопасности.

Основные электрозащитные средства до 1000 В.

Изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими рукоятками.

Дополнительные электрозащитные средства до 1000 В.

Диэлектрические галоши, диэлектрические ковры, переносные заземления, изолирующие подставки и накладки, оградительные устройства, плакаты и знаки безопасности.

Знаки и плакаты безопасности.

Предупреждающие (СТОЙ НАПРЯЖЕНИЕ и т.д.)

Запрещающие (НЕ ВКЛЮЧАТЬ РАБОТАЮТ ЛЮДИ и т.д.)

Предписывающие ( РАБОТАТЬ ЗДЕСЬ и т.д.)

Указательный ( ЗАЗЕМЛЕНО)

6.4 ЗАЗЕМЛЕНИЕ ЭЛЕКТРОКОТЕЛЬНОЙ

При обслуживании электроустановки опасность представляют не только неизолированные токоведущие части, находящиеся под напряжением, но и те конструктивные части электрооборудования, которые нормально не находятся под напряжением, но могут оказаться под напряжением при повреждении изоляции (корпуса электродвигателей, пускателей, баки трансформаторов, кожухи шина проводов, металлические каркасы щитов и т.п.)

Защитное заземление это преднамеренное соединение какой-либо части электроустановки с заземляющим устройством для обеспечения электробезопасности.

Кроме защитного заземления, в электроустановках применяется рабочее заземление, предназначенное для создания нормальных условий работы аппарата или электроустановки.

К рабочему заземлению относится заземление нейтралей трансформаторов, генераторов, дугогасительных катушек. Без рабочего заземления аппарат не может выполнить своих функций или нарушается режим работы электроустановки. Для выполнения заземлений различных назначений и разных напряжений в электроустановках, территориально, приближенных одна к другой, рекомендуется применять одно общее заземляющее устройство, удовлетворяющее требованиям к заземлению этих электроустановок.

Заземляющее устройство состоит из заземлителя и заземляющих проводников. В качестве заземлителей используются в первую очередь естественные заземлители:

проложенные в земле стальные водопроводные трубы;

трубы артезианских скважин;

стальная броня и свинцовые оболочки силовых кабелей, проложенных в земле;

металлические конструкции зданий и сооружений, имеющие надежный контакт с землей;

различного рода трубопроводы, проложенные в земле.

Расчет заземляющих устройств сводится к определению количества вертикальных электродов, которые нужно поместить в землю, чтобы получить необходимое сопротивление заземляющего устройства.

Электроды располагаем в ряд.

Приведём начальные данные для расчёта заземления:

Согласно требованиям ПУЭ сопротивление заземляющего устройства для совместного использования в электроустановках напряжением до и выше 1000 В не должно превышать:Ом.

В помещении электрокотельной имеется естественный заземлитель – трубопроводы горячей и холодной воды. Из-за отсутствия данных по их сопротивлению растеканию тока примем, что требуемое сопротивление искусственного заземлителя должно быть равным требуемому согласно ПУЭ:

Ом

В рассчитываемом помещении кроме оборудования на напряжение 0.4 кВ есть высоковольтное оборудование, которого также подлежат заземлению. Поэтому определим сопротивление заземляющего устройства по формуле:

,

где UРАСЧ=125 В - расчетное напряжение на заземляющем устройстве, в IРАСЧ=42 А - наибольший ток через заземление при замыкании на землю на стороне 6 кВ.

Тогда Ом

Когда в помещении находятся электроустановки разных уровней напряжения, то значение сопротивления заземляющего устройства принимается минимальное из требуемых, поэтому Ом.

Для грунта типа суглинок удельное сопротивление растекания тока составляет: Ом·м

Значение удельного сопротивления грунта в течении года не остаётся постоянным. Почва летом высыхает, а зимой промерзает, это сказывается на проводимости. Учёт данного фактора производится введением повышающих коэффициентов.

КПОВ.В=4.5 Для вертикальных электродов при длине 2-3 м и глубине залегания 0.5-0.8 м.

КПОВ.Г=1.8 Для горизонтальных электродов при глубине заложения 0.8 м.

Значения коэффициентов приведены для второй климатической зоны.

Определим удельные сопротивления с учётом повышающих коэффициентов

Ом·м

Ом·м

Для второй климатической зоны глубина промерзания грунта составляет 2.6 метра. А длина намеченных к использованию заземляющих электродов составляет 5 м. Такая длина исключает влияние погоды на удельное сопротивление для вертикальных электродов, поэтомуОм·м

Найдём сопротивление одного вертикального электрода выполненного из прутка диаметром 12 мм и длиной 5 м. Данные по электродам:

dЭ=0.012 м l=5 м Глубина заложения t=0.7+2.5=3.2 м.

;

Ом

Найдём примерное число вертикальных заземлителей при предварительно принятом коэффициенте использования КИСП=0.6


 штук. Предварительно n=13 штук.

Находим сопротивление горизонтальных электродов, которые представляют из себя стальные полосы 40*4. Коэффициент использования соединительной полосы 40*5 при числе заземляющих электродов >10 и отношению расстояния между заземлителями к их длине равному 1

КИСП.Г=0.62 [7].

, где l – длина полосы, l=5·n=5·13=65 м, b=0.04 м – ширина полосы, H=0.7 м – глубина залегания в грунте, тогда

Ом

Тогда требуемое сопротивление, которое должны давать вертикальные электроды:

Ом

По таблице 4-4 в [7] на стр 155 определим реальный коэффициент использования вертикальных электродов при их расположении вдоль длиной стороны здания в ряд, общем числе около 10 и отношению расстояния между электродами к их длине 1. КИСП=0.56. Тогда уточним число вертикальных электродов:

штук.


Принимаем окончательно число электродов 10. Электроды равномерно располагаем вдоль длиной стороны здания.

6.5 ПОЖАРНАЯ БЕЗОПАСНОСТЬ

Категория производства по взрывной и пожарной опасности.

1.  Группа возгораемости стройматериалов. Сюда относятся: деревянные стройматериалы; бетонные и гипсовые материалы, которые под воздействием огня и высокой температуры воспламеняются, тлеют или обугливаются при наличии источника зажигания.

2.  Степень огнестойкости основных строительных конструкций и минимальные пределы распространения огня. Степень огнестойкости I [СНиП 21-01-97]. Пределы огнестойкости: стены, коллоны-2,5ч; лестничные площадки, клетки-1ч; покрытие-0,5ч; потолки-1ч. распространение огня не допускается.

3.  Пожоро и взрываемые свойства веществ, используемые в производстве. Масла моторные и трансформаторные. Температура вспышки поров выше 180 ˚С. Для предотвращения аварий электрооборудования, пожаров, взрывов осуществляются периодические осмотры и техническое обслуживание эл.оборудования: проверяется состояние оборудования, отсутствие короткого замыкания, герметичность и т.д.

4.  Система пожарной связи и оповещение: сюда входят пожарная сигнализация, которая обнаруживает начальную стадию пожара, передает извещение о месте и времени его возникновения и, при необходимости включает автоматические водяные системы пожаротушения.

5.  Выбор средств пожаротушения. В помещении электрокотельной применяются:

-  Ручные углекислотные огнетушители ОУ-2, ОУ-5, ОУ-8-10 шт.,

-  Пенные, химические, воздушно-пенные и жидкостные-6 шт., кроме того, ящики с песком вместимостью 0,5.,1.,3 м3, и лопата 3 шт.

-  Войлок, кошма или асбест- 12 шт.

Устанавливаются пожарные краны, оборудованные рукавами и стволами, пожарные щиты. По пожарной опасности помещения электрокотельной относятся к классу В(НПБ-105-95 “Нормы противопожарной безопасности), т.е. имеется в наличие моторные масла и прочие жидкости с температурой вспышки паров выше 61 С, а также ряд других веществ, способных гореть при соединении с кислородом воздуха.

6.6 МОЛНИЕЗАЩИТА ЭЛЕКТРОКОТЕЛЬНОЙ

При проектировании зданий и сооружений системы электроснабжения необходимо учитывать и предотвращать возможность их поражения ударами молнии. Особенно это относится к открытым электроустановкам. Вероятность поражения молнией какого-либо сооружения, не оборудованного молниезащитой, оценивают формулой:

,

где n - ожидаемое число поражений молнией, 1/год;

nC- среднее число поражений молнией на единице земной поверхности за год в данном районе, 1/(). Для Иркутской области продолжительность грозовой деятельности составляет 20 часов, тогда

,

где а,b и h - соответственно длина, ширина и высота рассчитываемого здания. В нашем случае а=70 м b=25 м. h=7м

Тогда ожидаемое число поражений здания молнией в год составит:


Молнии характеризуются большим разрушающим действием, объясняемым большими амплитудой, крутизной нарастания и интегралом тока. С вероятностью 5 % амплитудное значение тока молнии превышает 200 кА, поэтому несмотря на небольшую вероятность попадания молнии, необходимо надёжно защитить проектируемую установку. Согласно [7] рассчитаем зону молниезащиты одиночного стержневого молниеотвода. Она представляет собой конус с высотой: , где H=45 м - высота молниеотвода.

м

И радиусом на уровне земли:

м

Расстояние от центра молниеотвода до самой отдалённой от неё точки здания по генеральному плану составляет 43 метра. Таким образом, здание электрокотельной надёжно защищёно от попаданий молний. Зону молниезащиты покажем на генеральном плане электрокотельной.


7. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

7.1 ОРГАНИЗАЦИЯ РЕМОНТНО-ЭКСПЛУАТАЦИОННЫХ РАБОТ

В помещении электрокотельной поддержание электрооборудования в работоспособном состоянии, восстановление его важнейших характеристик, улучшение эксплуатационных качеств и повышение экономической эффективности его использования достигается при помощи системы планово-предупредительного ремонта (ППР). Сущность системы ППР заключается в предотвращении прогрессивного износа путем проведения профилактических осмотров, технического обслуживания, текущего и капитального ремонтов. Чередование, трудоемкость и периодичность этих мероприятий определяется в зависимости от особенностей агрегата и условий эксплуатации. Объем ремонта принимается по утвержденным нормативам трудоемкости, периодичности, зависящих от типа выполняемых работ.

В проектируемом подразделении вводим смешанную форму эксплуатации электроустановок, предусматривающую выполнение всех видов работ планово-предупредительного технического обслуживания и ремонта (ППТОР), т.е. ремонтные работы выполняются ремонтным персоналом ТЭЦ-11. Преимущества этой формы эксплуатации зависят от степени централизации.

Произведём расчёт численности ремонтно-эксплуатационного персонала. Для этого определим годовой объем работ при капитальном и текущем ремонте оборудования.

Годовая трудоёмкость на ремонт группы оборудования TТР определяется как:

TТР=nШТ·mЧР·t,


где nШТ – количество однотипного оборудования,

mЧР – число ремонтов в году, отношение числа месяцев в году к ремонтному циклу,

t – норма трудоёмкости одного ремонта.

7.2 РАСЧЁТ ГОДОВОЙ ТРУДОЁМКОСТИ ОБСЛУЖИВАНИЯ ОБОРУДОВАНИЯ

таблица 7.1 Расчёт годовой трудоёмкости на ремонт оборудования.

п/п

Наименование

оборудования

Кол-во

единиц, n шт.

Ремонтный

цикл, Рц (мес.)

Число ремонтов в году,

mчр шт.

Норма трудоёмкости одного ремонта,

t чел*час

Годовая

Трудоёмкость на группу оборудования,

Ткр чел*час

1 СН-1 ступени 2 72 0,17 401 136,34
2 СН-2 ступени 2 72 0,17 401 136,34
3 ЭК. U=6 кВ 6 72 0,17 401 409,02
4 КЛ U=6 кВ 10 240 0,05 72 36
5 Ячейки U=6 кВ 38 36 0,33 23 288,42
6 Тр-ры тока 40 144 0,08 20 64
7 Тр-ры напряжения 2 144 0,08 24 3,84
8 Изм. приборы 40 24 0,5 6 120
9 КТП ТМ-100/6 2 144 0,08 258 41,28
10 Н.А.Б. Р=11 кВт 2 72 0,17 31 10,54
11 К.Н. Р=5,5 кВт 2 72 0,17 15 5,1
12 Н.О.П. Р=11 кВт 2 72 0,17 31 10,54
13 Д.Н. Р=7,45 кВт 2 72 0,17 17 5,78
14 Кран-балка 1 24 0,5 90 45
15 Пускатели 15 60 0,2 8 24
16 Щиты освещения 2 12 1 9 18
17 КЛ. S=6-35 мм2 1 240 0,05 76 3,8
18 КЛ. S=50-70 мм2 1 240 0,05 114 5,7
19 КЛ.S=95-240 мм2 1 240 0,05 180 9
20 Неучтён.обор.(10%) 137,27
 ИТОГО 1509,97

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22


ИНТЕРЕСНОЕ



© 2009 Все права защищены.