| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ
| Контрольная работа: Определение статистических данных производства продукцииЗадача 5Реализация товаров на колхозном рынке характеризуется данными представленными в табл.5. Таблица 5.
Определите: 1) общий индекс физического объема продукции; 2) общий индекс цен и абсолютный размер экономии (перерасхода) от изменения цен; 3) на основании исчисленных индексов определить индекс товарооборота. Решение. Индекс представляет собой относительную величину, получаемую в результате сопоставления уровней сложных социально-экономических показателей во времени, в пространстве или с планом. Индивидуальными называются индексы, характеризующие изменения только одного элемента совокупности. Общий индекс отражает изменение по всей совокупности элементов сложного явления. Стоимость - это качественный показатель. Физический объем продукции - количественный показатель. Общий индекс физического объема продукции вычисляется по формуле:
где p0 и р1 - цена единицы товара соответственно в базисном и отчетном периодах; q0 и q1 - количество (физический объем) товара соответственно в базисном и отчетном периодах. Количество проданных товаров увеличилось на 33,3%. Или в деньгах: 20 - 15 = 5,0 тыс. грн. Общий индекс стоимости вычисляется по формуле: Следовательно, цены на данные товары в среднем увеличились на 50%. Сумма сэкономленных или перерасходованных денег: сумма возросла на 50%, следовательно, население в отчетном периоде на покупку данных товаров дополнительно израсходует: 30 - 20 = 10 тыс. грн. Общий индекс товарооборота вычисляется по формуле: Товарооборот в среднем возрос на 100%. Взаимосвязь индексов: 1,333 * 1,5 = 2,0 Задача 6Имеются данные о выпуске одноименной продукции и её себестоимости по двум заводам
Вычислите индексы: 1) себестоимости переменного состава; 2) себестоимости постоянного состава; 3) структурных сдвигов. Поясните полученные результаты. Решение. Индекс себестоимости переменного состава вычисляется по формуле: где z0 и z1 - себестоимость единицы продукции соответственно базисного и отчетного периодов; q0 и q1 - количество (физический объем) продукции соответственно в базисном и отчетном периодах. Индекс показывает, что средняя себестоимость по двум заводам повысилась на 71,6%, это повышение обусловлено изменением себестоимости продукции по каждому заводу и изменением структуры продукции (увеличением объема выпуска). Выявим влияние каждого из этих факторов. Индекс себестоимости постоянного состава вычисляется по формуле: То есть себестоимость продукции по двум заводам в среднем возросла на 70%. Индекс себестоимости структурных сдвигов вычисляется по формуле: Или Взаимосвязь индексов: 170*100,9=171,6 Вывод: Индекс себестоимости переменного состава зависит от изменения уровня себестоимости и от изменения объема производства, т.е. средний прирост себестоимости составил 71,6%. Индекс себестоимости постоянного состава показывает изменение себестоимости при фиксированном объеме производства, т.е. в среднем по заводам себестоимость повысилась на 71%. Индекс себестоимости переменного состава выше, чем индекс себестоимости постоянного состава, это свидетельствует о том, что произошли благоприятные структурные сдвиги. Индекс структурных сдвигов равен 1,009%, т.е. за счет изменения объемов производства по заводам средняя себестоимость повысилась на 0,9%. Задача 7Для изучения тесноты связи между выпуском валовой продукции на один завод (результативный признак Y) и оснащенностью заводов основными производственными фондами (факторный признак X) по данным задачи 1 вычислить коэффициент детерминации и эмпирическое корреляционное отношение. Решение. Показателем тесноты связи между факторами, является линейный коэффициент корреляции. Линейный коэффициент корреляции вычислим по формуле:
Линейное уравнение регрессии имеет вид: y=bx-а. Коэффициент детерминации показывает насколько вариация признака зависит от фактора, положенного в основу группировки и вычисляется по формуле: где d2 - внутригрупповая дисперсия; s2 - общая дисперсия. Общая дисперсия характеризует вариацию признака, который зависит от всех условий в данной совокупности. Межгрупповая дисперсия отражает вариацию изучаемого признака, которая возникает под влиянием фактора, положенного в основу группировки и рассчитывается по формуле: где fi - частота каждой группы. Средняя из внутригрупповых дисперсия: где Эмпирическое корреляционное отношение рассчитывается по формуле: Все расчетные данные приведены в таблице 7. Таблица 7
Подставив вычисленные значения в формулу, получим: Коэффициент детерминации h2 = 0,87. Эмпирическое корреляционное отношение имеет вид: у = 1,0873х - 0,161. Линейный коэффициент корреляции r = 0,93. a=0,161b=1,0873 Так как значение коэффициента корреляции близко к единице, то между выпуском валовой продукции и оснащенностью заводов основными производственными фондами есть тесная зависимость. b - коэффициент регрессии, т.к b > 0, то связь прямая. Список использованной литературы1. 1. Адамов В.Е. Факторный индексный анализ. - М.: Статистика, 1997. 2. 2. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник. - М.: Финансы и статистика, 2004. 3. 3. Ефимова М.Р., Рябцев В.Ф. Общая теория статистики: Учебник. М.: Финансы и статистика, 1999. |
© 2009 Все права защищены. |