рефераты бесплатно
 

МЕНЮ


Автоматизация процесса бурения

Например, специальный режим устанавливается при бурении по полезному

ископаемому, которое подвержено разрушению от механических воздействий и

потока промывочной жидкости. При этом уменьшается частота вращения

снаряда и расход промывочной жидкости.

Приработка алмазных коронок проводится также на специальном режиме,

при котором осевая нагрузка и частота вращения ниже оптимального или

рационального режимов. Иногда выделяют так называемый форсированный режим

бурения.

Скорости бурения

Технологические режимы влияют на показатели бурения, под которыми

понимают количественные и качественные параметры сооружения скважины,

скорость, стоимость 1 м пробуренной скважины, процент выхода керна,

направление скважины и др.

Выполнение отдельных процессов при сооружении скважины может

характеризоваться определенной скоростью бурения (механическая, рейсовая,

техническая, коммерческая и цикловая).

Механическая скорость бурения -величина углубки скважины за единицу

времени чистого бурения и определяется (в м/ч) по формуле

[pic],

где l - величина углубки скважины за время чистого бурения, м; [pic] -

время чистого бурения, ч.

Под чистым бурением понимают время, в течение которого разрушаются

породы на забое.

В практике в зависимости от момента определения различают начальную,

конечную, среднюю, наибольшую механическую скорости.

Механическая скорость бурения - основной показатель, отражающий

эффективность способа бурения, качество применяемых породоразрушающих

инструментов, рациональность режимов их эксплуатации, совершенство

применяемой буровой технологии и т. д.

Рейсовая скорость бурения - величина углубки скважины за единицу

времени продолжительности рейса и определяется ( в м/ч) по формуле

[pic],

где [pic] - величина углубки скважины за рейс; [pic] - время на

выполнение спуско-подъемных и вспомогательных операций, ч.

Рейсом называется комплекс работ, включающий в себя спуск и подъем

бурового снаряда, чистое бурение, извлечение керна, замену

породоразрушающего инструмента и др.

Рейсовая скорость зависит от механической скорости и глубины

скважины и дополнительно характеризует износоустойчивость

породоразрушающих инструментов, совершенство буровых снарядов,

обеспечивающих высокопроцентный отбор керна, а также степень комплексной

механизации и автоматизации выполнения спускно-подъемных и

вспомогательных операций в течение рейса.

Техническая скорость бурения определяется объемом бурения,

пробуренным одной бригадой (буровой установкой) за месяц с учетом

времени, затраченного на чистое бурение, СПО и вспомогательные операции,

крепление и цементирование, все виды исследований, планово-

предупредительные ремонты и т. д. (в м/ст.-мес),

[pic],

где L - объем бурения за 1 месяц, м; [pic], [pic] и [pic] - время

соответственно чистого бурения, СПО и дополнительных затрат (крепление,

исследование, плановые ремонты и т. д.) за месяц, ч; М -

продолжительность месяца, ч (применяется М = 720 или 744 ч).

Техническая скорость бурения зависит от механической и рейсовой

скорости и дополнительно отражает эффективность выполнения всех

дополнительных производительных работ, связанных с сооружением скважины

(крепление, цементирование, гидрогеологические и геофизические

исследования и т. д.).

Коммерческая скорость бурения Определяется объемом бурения за месяц

с учетом также непроизводительных затрат ( простои, осложнения, аварии)

(в м/ст.-мес.),

[pic],

где [pic] - время непроизводительных затрат на месяц, ч.

Цикловая скорость бурения определяется отношением глубины скважины к

затратам времени в месяц от перевозки бурового оборудования до ликвидации

скважины (м/ст.-мес.).

[pic],

Где Н - глубина скважины, м; [pic] - общие затраты времени на сооружение

скважины (от перевозки до ликвидации), ст.-мес.

Цикловая скорость бурения характеризует уровень применяемых

технических средств, технологии бурения, организации труда при сооружении

скважины, ее ликвидации или сдаче в эксплуатацию.

1.6 Сущность и разновидности глубокого вращательного бурения

Вращательное бурение без отбора керна является основным средством

сооружения скважины при разведке и эксплуатации нефтяных и газовых

месторождений. Кроме этого оно применяется при бурении водозаборных,

взрывных, гидротермальных и других скважин для различных инженерных

целей, а также при бурении стволов шахт. Учитывая выше сказанное, опишем

подробнее именно глубокое вращательное бурение.

Бурение глубоких скважин осуществляется только вращательным способом

и подразделяется на роторное, турбинное и электробурами.

При роторном бурении буровой снаряд вращают ротором, устанавливаемым

на поверхности земли над устьем скважины.

При турбинном бурении породоразрушающий инструмент вращается

турбобуром, который спускают на забой скважины вместе с долотом на

колонне бурильных труб. Турбобур представляет собой многоступенчатую

гидравлическую турбину, работающую от потока промывочной жидкости.

Колонна бурильных труб при этом не вращается, неподвижный ротор

воспринимает реактивный момент.

При бурении электробуром породоразрушающий инструмент вращается

маслонаполненным забойным электродвигателем переменного тока, имеющим

малый диаметр и значительную длину. Колонна бурильных труб при этом

неподвижна. Благодаря этому резко сокращается вращающий момент на

колонне, исключается знакопеременный изгиб труб и почти полностью

снимаются динамические нагрузки. Бурильная колонна работает в более

благоприятных нагрузках, в результате чего увеличивается стойкость труб.

Электроэнергия к электродвигателю подводится по вмонтированным в

бурильные трубы отрезкам кабеля, которые при свинчивании бурильных труб

автоматически соединяются. Промывочная жидкость подается на забой по

зазору между внутренними стенками труб и кабелем.

При роторном и турбинном бурении, там, где необходимо уточнение

геологического разреза применяется бурение с отбором керна колонковыми

долотами или турбодолотами.

Роторное бурение и бурение электробурами может вестись с промывкой

или продувкой.

Глубины бурения вращательным способом достигают 10 км. Этим способом

проектируется пробурить скважины глубиной 15 км. Диаметры скважины

колеблются от 76 до 590 км.

При всех разновидностях глубокого вращательного бурения используют

одни и те же очень сложные буровые установки, общая установочная мощность

которых достигает 4000 кВт, а масса - 1000 т.

.Вращательное бурение без отбора керна возможно в породах любой

твердости от I до XII категории по буримости при относительно высоких

скоростях углубки скважин. В мягких породах механическая скорость бурения

может достигать 100 м/ч, а коммерческая - 6 - 9 тыс. м/ст.-мес. В твердых

породах при больших глубинах механическая скорость бурения уменьшается до

1 м/ч, а коммерческая до 200-300 м/ст.-мес.

В России около 76 % общего объема скважин бурят турбинным способом,

22,5 % - роторным и 1,5 % - электробурами.

Глава 2. Технико-экономическое обоснование разработки системы

автоматизированного управления процессом бурения скважин

2.1 Технико-экономические предпосылки автоматизации управления

процессом бурения

Автоматизация технологических процессов на основе современной

техники должна обеспечить интенсификацию производства, повышение качества

и снижение себестоимости продукции.

Необходимость этого вытекает из анализа производственной

деятельности геологоразведочных организаций по выполнению плановых

заданий. Несмотря на то, что внедрение современного оборудования,

инструментов, прогрессивной технологии бурения, средств механизации и

автоматизации отдельных операций, совершенствование организации труда в

целом обеспечило выполнение этих заданий, в разведочном бурении остаются

значительные резервы повышения производительности труда и улучшения его

технико-экономических показателей. Эти резервы заключаются прежде всего

в оптимизации и автоматизации оперативного управления процессом бурения

скважин и в совершенствовании организации работ.

. Автоматизация процесса бурения стала практически возможной лишь с

появлением относительно дешевых и надежных ЭВМ, способных выполнять

функции автоматизированного управления технологическим процессом

бурения.

Эта глава посвящена обсуждению практических вопросов, связанных с

выявлением необходимости и обоснования разработки систем

автоматизированного управления процессом бурения. Поскольку в бурении

нет собственного значительного опыта автоматизации управления

технологическими процессами, здесь использован опыт и других отраслях

промышленности.

В результате внедрения в производство новой техники и прогрессивной

технологии скорости алмазного бурения за последние 10 лет возросли в 1,5-

2 раза и, по мнению специалистов, сохранить в дальнейшем темпы роста

производительности только за счет технических решений вряд ли возможно.

Но в условиях интенсифицированного производства, возросших скоростей

бурения резко повысилась физическая нагрузка на буровой персонал.

Учитывая также и тенденции к росту глубин бурения разведочных и

поисковых скважин, можно утверждать, что возросли психологическая

нагрузка и ответственное за решения, принимаемые бурильщиком в процессе

бурения. Уже сегодня время простоев из-за неправильных технологических

решений в процессе бурения составляет 5-7% общего баланса рабочего

времени.

Итак, с одной стороны, имеется объективная необходимость в

автоматизации процесса бурения, с другой - существуют необходимые

предпосылки для создания систем автоматизированного управления.

Рассмотрим подробнее некоторые аспекты технико-экономического об

снования разработки систем управления.

2.2. Характеристики процесса бурения как объекта автоматизированного

управления

Специалисты американской фирмы IBM, имеющие большой опыт в области

создания управляющих систем с ЭВМ, для сложных технологических процессов,

которые потенциально необходимо автоматизировать, приводят следующие

общие характеристики и факторы:

. необходимость частных и значительных перестроек рабочих режимов;

. мощность установки;

. возмущения, действующие на процессы;

. сложность процесса и др.

Процесс бурения геологоразведочных скважин характеризуется частыми и

значительными перестройками рабочих режимов. Это связано как с частым

стохастическим изменением свойств разбуриваемых пород, так и с другими

факторами, например, изменением свойств породоразрушающего инструмента в

процессе бурения и очистного агента, удлинением бурильного вала;

специфическими операциями, обусловленными постановкой инструмента на

забоя и его приработкой, подъемом керна, бурильных труб и др.

По мнению американских специалистов, мощность установки, выраженная

через размер капиталовложений, является одним из критериев для

обоснования необходимости автоматизации технологического процесса. При

стоимости системы, управляющей сложным процессом, в среднем- равной 300

тыс. долл. и двухлетнем сроке окупаемости стоимость основных фондов

должна составлять от 5 до 60 млн. долл. (данные 1996 г.)

Другая общая особенность многих процессов, для которых обосновано

применение автоматизированного управления - частые и сильные возмещающие

воздействия, приводящие к экономическим потерям.

Процесс бурения, особенно глубоких скважин, протекающий в условиях

значительной неопределенности, подвергается сильным и непредсказуемым

возмущающим воздействиям, основа которых -как горно-геологические, так и

технико-технологические факторы.

Процесс бурения является не только производственным процессом с

точки зрения потребления материальных и трудовых ресурсов и производства

продукта труда в виде сформированного (пробуренного) ствола скважины и

полученного керна (за что, собственно, и производится оплата буровой

бригаде), но также и научно-исследовательским процессом, если иметь в

виду основную цель производства буровых работ - получение информации о

строении земных недр.

Возникает парадокс: планируя, проектируя и нормируя процесс бурения,

мы тем самым утверждаем, что знаем предмет труда - земные недра. Но

скважины бурят, следовательно, мы не знаем предмета труда и стремимся

получить новые знания о строении земных недр. Пока подготовляется процесс

бурения, его проектирование мы рассматриваем как детерминированный

процесс. После начала бурения и в ходе бурения этот производственный

процесс приобретает характер стохастического, научно-исследовательского,

информационного процесса. Противоречие между производственным и научно-

исследовательским характером процесса бурения является его особенностью,

которую необходимо учитывать при создании системы автоматизированного

управления.

С точки зрения методики автоматического управления процесс бурения

практически не исследован. Анализ диаграммы записи параметров режимов

бурения, записанный с максимально допустимой частотой, показывает

практически непрерывные изменения как параметров, так и показателей

процесса бурения. С какой частотой нужно управлять процессом бурения, как

зависит его эффективность от частоты управления? При ручном управлении

эти вопросы не возникали. При автоматическом управлении эта задача

является принципиальной.

Управляющие воздействия от системы управления к управляемому объекту

должны поступать своевременно и в соответствии с изменившимися условиями

бурения. От быстродействия управления во многом висят качество управления

и конечный результат. А поскольку процесс бурения динамичен и требует

частой корректировки управляющих воздействий, по крайней мере в сильно

перемежающихся породах, то очевидно, что автоматизированная система

управления обладает преимуществом перед человеком.

Сложные с технологической или эксплуатационной точки зрения процессы

могут быть объектом автоматизации управления с применением ЭВМ.

Технологическая сложность процесса бурения обусловлена большим

количеством технологических переменных, значения которых в той или иной

степени определяют эффективность этого процесса, и множеством

взаимодействий между ними, что требует приложения не всегда очевидных

управляющих воздействий. Это особенно проявляется в различных

технологических ситуациях, от правильности распознавания которых зависят

управляющие воздействия бурильщиков. Эксплуатационная сложность

обусловлена технологической сложностью и характеризуется требованием

ведения процесса бурения на оптимальном уровне, в пределах установленной

системы ограничений. Это усугубляется и тем, что бурильщику для выбора

правильного решения необходимо помнить и предысторию процесса бурения за

сравнительно длительный период времени.

Ручное управление даже двумя-тремя параметрами процесса бурения на

оптимальном уровне в условиях частоперемежающихся пород и глубокой

скважины вряд ли возможно.

Автоматизированное управление процессом бурения позволяет успешно

изменять практически одновременно два-три параметра с недоступной

человеку частотой. Следовательно, источником эффективности

автоматизированного управления является, по крайней мере, уменьшение

промежутка времени, поиск оптимального режима, быстрая перестройка с

одного режима на другой в связи с изменившимися условиями, а также

практически полное исключение нарушений процесса, приводящих к аварийным

ситуациям. Кроме того, стратегия управления процессом бурения может быть

построена на учете вычисляемых показателей (например, углубка за

оборот). Эти косвенные переменные рассчитываются управляющей ЭВМ,

использующей информацию об основных параметрах процесса бурения, которые

измеряются серийной контрольно-измерительной аппаратурой.

3.3. Основные источники эффективности разработки и внедрения систем

автоматизированного управления процессом бурения

Один из основных источников экономической эффективности -повышение

качества управления при его автоматизации.

Если управление процессом бурения рассматривать как поддержание

параметров процесса (например, механической скорости и т. п.) возможно

ближе к заданному режиму, который устанавливается бурильщику инженером-

технологом на основе его знаний геолого-технических условий бурения, то

качеством управления будет то, насколько точно в течение длительного

времени процесс бурения соответствует заданным режимам, установкам и

т.д. Как показывает практика, обычно усилий бурильщика недостаточно,

чтобы поддерживать процесс в пределах заданного режима или показателя.

Это объясняется случайным характером факторов, влияющих на процесс

бурения, и ограниченными возможностями человека.

Система автоматизированного управления обеспечивает повышение

качества управления благодаря своей особенности быстро реагировать на

возмущения и вырабатывать управляющие воздействия, в которых

учитывается взаимное влияние параметров и показателей процесса. Кроме

того, система гарантирует качество управления, что особенно важно.

Помимо описанного подхода к управлению, заключающегося в

поддержании заданного состояния процесса (так называемое локальное

регулирование), в системе должны быть реализованы перспективные методы

управления, которые нельзя осуществить с помощью традиционного ручного

управления. К ним можно отнести такие методы; реализуемые в процессе

автоматизированного управления, как оперативная оптимизация, адаптивная

настройка, регулирование по возмущению, управление по вычисляемым

косвенным переменным, которые не поддаются непосредственному измерению

(например, достижение минимального отношения мощности на бурение к

механической скорости бурения), и т.д.

Другой источник эффективности систем автоматизированного управления

- увеличение производительности труда в результате роста механической

скорости бурения, уменьшения количества аварий и осложнений, увеличения

производительного времени за счет объективного документированного

контроля.

Очевидно, в ближайшем будущем не предвидится сокращение

обслуживающего персонала буровой установки, так как, по крайней мере с

точки зрения техники безопасности, буровая установка должна обслуживаться

не менее, чем двумя рабочими. Но можно говорить об условном высвобождении

численности при автоматизированном управлении даже в процессе бурения

одной скважины. Поскольку система управления принимает на себя часть

функций обслуживающего бурового персонала, то в высвободившееся время

рабочие могут выполнять различные вспомогательные работы. Кроме того, за

счет повышения скоростей бурения возможно сокращение количества буровых

установок, а следовательно, и численности рабочих.

Снижение себестоимости 1 м бурения скважины - следующий источник

эффективности систем автоматизированного управления процессом бурения.

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.