рефераты бесплатно
 

МЕНЮ


Учебное пособие: Производственная безопасность

Для снижения уровней шума и вибрации в ПО с опорными узлами на основе подшипников качения рекомендуются следующие меры:

–  выбирать подшипники минимально необходимых размеров;

–  применять однорядные шарикоподшипники;

–  применять самоустанавливающиеся опоры;

–  применять упругие вкладыши из вибродемпфирующих материалов;

–  обеспечивать соосность посадочных мест на валу и в корпусе подшипникового узла;

–  обеспечить минимальный радиальный зазор между подшипником и корпусом узла;

–  обеспечить параметры шероховатости посадочных мест в соответствии с классом точности выбранного подшипника;

–  заполнять камеры подшипниковых узлов смазочным материалом (на 50 %).

8.6.2 Снижение уровней шума и вибрации в зубчатых передачах и редукторах

Шум и вибрация в таких системах возникают как в результате деформации сопрягаемых зубьев под действием передаваемой мощности, так и вследствие динамических процессов, обусловленных дефектами, допущенными при изготовлении и монтаже зубчатых передач. На величину излучаемых шума и вибрации здесь влияют частота вращения валов и передаваемая мощность. Так, например, при двукратном увеличении этих параметров уровень звукового давления возрастает на 5…7 дБ. Снижение уровня генерируемого шума в этом случае возможно за счёт применения: двухступенчатых передач той же мощности; косозубых передач; уменьшения диаметра шестерен и др. Эти меры могут дать снижение уровня звукового давления на 3…6 дБ.

Большое значение для генерации шума имеет материал зубчатых колёс и его термообработка. Например, замена стали на чугун снижает уровни звукового давления на 3…5 дБ; закалка и другие виды термообработки, наоборот, ведут к увеличению уровня звукового давления на 4…6 дБ, т.к. при этом возрастают деформации зубчатых колёс. На величину генерируемого шума также влияет наличие смазочного материала (отсутствие его или наличие могут изменять величину уровня звукового давления в диапазоне ± 10…15 дБ).

Ориентировочно уровень звукового давления L, дБ, генерируемый силовой зубчатой передачей можно определить по формуле:

L= L0 + 20 lg u,(12)

где L0 – поправка на уровень звукового давления, зависящая от качества изготовления зубчатых колёс, дБ (40…55 дБ);

u – окружная скорость вращения зубчатых колёс, м/с.

Шум в редукторах складывается из шума, возникшего в результате колебаний корпусов под действием вибрации, генерируемой при работе зубчатых передач, и шума, производимого воздухом, проникающим через неплотности в корпусе. Для снижения шума редукторов кроме выше приведенных рекомендаций целесообразно покрывать их корпуса звукопоглощающими материалами, а весь редуктор накрывать звукоизолирующим кожухом.

8.6.3 Снижение шума и вибрации, вызванных неуравновешенностью масс вращающихся деталей

Одной из причин возникновения вибрации и шума при работе производственного оборудования является неуравновешенность масс вращающихся деталей. При этом, в зависимости от взаимного расположения осей инерции и вращения, различают статическую и динамическую неуравновешенность.

Статическая неуравновешенность вызвана разностью масс конструктивных элементов, находящихся на диаметрально противоположных сторонах детали, а также кривизной вала, несоосностью поверхности детали с поверхностью шеек вала. При этом суммарная ось инерции и ось вращения параллельны.

Динамическая неуравновешенность возникает при пересечении суммарной оси инерции с осью вращения не в центре масс детали, т.е. ось инерции и ось вращения не параллельны друг другу.

Частота вибрации, вызванной неуравновешенностью масс вращающихся деталей, равна частоте их вращения.

Снижение уровней вибрации и сопровождающего её шума при этом достигается балансировкой вращающихся деталей.

Причиной вибрации (и соответственно шума) может быть также нарушение соосности валов оборудования и привода (например, электродвигателя). Снижение уровней вибрации и шума в этом случае достигается соответствующей центровкой валов.

8.6.4 Снижение шума газодинамических процессов

Основными причинами генерирования шума в газовых потоках являются вихревые процессы (турбулентность), колебания среды под действием рабочих органов оборудования, пульсация давления, а также колебания, вызванные неоднородностью газового пространства по его плотности. Снижение уровня звукового давления непосредственно в производственном оборудовани достигается увеличением зазора между деталями, находящимися в газовой струе, и улучшением газодинамических характеристик проточной части оборудования.

Значительное снижение шума достигается установкой специальных глушителей на всасывающих и выхлопных линиях компрессоров, вентиляторов и др. Глушители представляют собой цилиндрическое устройство с наполнением из стеклянного или базальтового волокна со средней объёмной плотностью ~ 20 кг/м3. Снижение уровня звукового давления при этом достигает 70 дБ на средних частотах (~ 2000 Гц) и 15…30 дБ на низких и высоких частотах. Принцип действия глушителя шума основан на явлении звукопоглощения.

8.6.5 Снижение вибрации производственного оборудования путём вибропоглощения и виброизоляции

Вибропоглощение. Принцип вибропоглощения заключается в уменьшении амплитуды колебаний аппарата (машины) или отдельных его частей за счёт облицовки вибрирующих поверхностей жёсткими и мягкими демпфирующими покрытиями. При этом энергия колебательного процесса переходит во внутреннюю энергию облицовки в результате трения между её отдельными частицами (доменами), которые имеют различную собственную частоту колебаний.

В качестве жёстких покрытий используются пластмассы с динамическим модулем упругости 100…1000 МПа, которые наиболее эффективны на низких и средних частотах (1… 1000 Гц).

Мягкие покрытия (резина, мягкие пластмассы, мастики и т. п. материалы) с динамическим модулем упругости ~10 МПа более эффективны на высоких частотах (> 1000 Гц).

Толщина вибропоглощающего слоя в обоих случаях составляет 2…3 толщины стенки защищаемого оборудования.

Виброизоляция. Принцип виброизоляции заключается в создании упругой связи между источником колебаний (машины и аппараты) и поддерживающей его конструкцией (опора, основание и др.) путём размещения между ними амортизаторов. В качестве амортизаторов используются стальные пружины или упругие прокладки из резины и других подобных материалов.

Эффективность виброизоляции характеризуется коэффициентом передачи действующей силы виброколебаний на основание (опору), определяемым по формуле

К = [(f/foz)2 – 1]–1 (13)

где: f – частота колебаний системы (аппарат–опорная плита–виброизолятор) под действием возмущающей силы, Гц;

foz – собственная частота колебаний системы, Гц.

Из данного выражения следует:

1. При f < foz система имеет такое упругое сопротивление, что сила виброколебаний полностью передаётся основанию;

2. При f = foz возникает явление резонанса, при этом амплитуда колебаний резко возрастает;

3. При  система оказывает инерционное сопротивление, и эффективность виброизоляторов возрастает с увеличением частоты колебаний.

Таким образом условием надёжной работы виброизоляторов является обеспечение соотношения

 (14)


9. Безопасность эксплуатации систем, работающих под давлением

9.1 Сосуды, работающие под давлением

Под сосудом понимается геометрически замкнутая ёмкость, предназначенная для ведения химических, тепловых и других технологических процессов, а также для хранения и транспортировки газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцера для подключения различных коммуникаций и устройств.

В зависимости от условий эксплуатации сосуды могут быть передвижными (для временного использования в различных местах или во время их перемещения) и стационарными (постоянно установленные в одном определённом месте).

Рабочее давление в сосуде может быть как избыточное (по отношению к атмосферному) внутреннее, так и избыточное наружное, возникающее при нормальном протекании рабочего процесса.

Чаще всего используются сосуды следующих видов:

баллон – сосуд, имеющий одну или две горловины для установки вентилей, фланцев или штуцеров, предназначенный для транспортировки, хранения и использования сжатых, сжиженных или растворённых под давлением газов;

бочка – сосуд цилиндрической или другой формы, который можно перекатывать с одного места на другое и ставить на торцы без дополнительных опор, предназначенный для транспортировки и хранения веществ, указанных выше;

цистерна – передвижной сосуд, постоянно установленный на раме ж/д вагона, на шасси автомобиля (прицепа) или других средствах передвижения, предназначенный для транспортировки и хранения веществ, указанных выше;

резервуар – стационарный сосуд, предназначенный для хранения веществ, указанных выше;

Конструкция сосуда должна обеспечить надёжность и безопасность эксплуатации в течение расчётного срока службы и предусматривать возможность проведения технического освидетельствования, очистки, промывки, полного опорожнения, продувки газом или паром, ремонта, эксплуатационного контроля состояния металла и соединений. Сосуд должен иметь необходимое количество люков и смотровых лючков для осмотра, очистки, ремонта, монтажа и демонтажа разборных внутренних устройств.

Сосуд должен быть изготовлен цельнокованным или сварным способом. Отверстия в стенках сосуда должно быть вне сварных соединений.

Материалы, применяемые для изготовления сосудов должны обеспечивать их надёжную работу в течение расчётного срока службы с учётом заданных условий эксплуатации (по величине давления, температуры, составу и др.).

В качестве материала для сосудов, работающих под давлением, используется сталь (углеродистая и легированная), цветные металлы и их сплавы. Неметаллические материалы могут применяться только с разрешения органов «Федеральной службы по технологическому, экологическому и атомному надзору РФ» (Ростехнадзор, РТН) на основании заключения специализированной организации.

Все сварные соединения сосудов, работающих под давлением, должны быть подвержены неразрушающему контролю на наличие в них дефектов.

9.1.1 Опасности, возникающие при эксплуатации сосудов, работающих под давлением

Основная опасность при эксплуатации сосудов заключается в возможности их разрушения при внезапном адиабатическом расширении газов и паров (физический взрыв). При физическом взрыве потенциальная энергия сжатой среды в течение малого промежутка времени реализуется в кинетическую энергию осколков разрушенного сосуда и ударную волну.

Особенно опасны взрывы сосудов, содержащих горючие вещества, так как при этом возникает химический взрыв, являющийся причиной пожара.

При взрывах сосудов развиваются большие мощности, что и является причиной сильных разрушений. Так, например, при разрыве сосуда V = 1 со сжатым до Р = 1,2 МПа воздухом с длительностью физического взрыва 0,1 с развивается мощность, равная 28 МВт.

Наиболее частыми причинами аварий сосудов, работающих под давлением, являются:

–  несоответствие конструкции максимально допустимым давлению и температуре;

–  превышение давления сверх предельного для данного сосуда;

–  потеря механической прочности в результате внутренних дефектов, коррозии, местных перегревов и др.;

–  несоблюдение установленного режима работы;

–  низкая квалификация обслуживающего персонала;

–  отсутствие технического надзора.

Так как наиболее часто на производствах топливно-энергетического комплекса используются баллоны для транспортирования, хранения и использования сжатых, сжиженных и растворённых газов, рассмотрим подробнее опасности, возникающие при их эксплуатации.

Взрывы баллонов возможны при повреждении корпуса в случае падения или удара по баллону, особенно при температуре < –30 оС, т. к. при этом повышается хрупкость стали. Взрыв может произойти и при повышении температуры из-за роста давления среды в баллоне.

Причиной взрыва может быть также переполнение баллона сжиженными газами из-за резкого повышения давления при росте температуры, что объясняется следующим образом. При повышении температуры баллона, полностью заполненного сжиженным газом, величина возросшего при этом давления рассчитывается по формуле

р = ∆t ·α/β (15)

где: ∆t – диапазон повышения температуры содержимого баллона, град.;

α – коэффициент объёмного теплового расширения газа, содержащегося в баллоне;

β – коэффициент объёмного теплового сжатия сжиженного газа, содержащегося в баллоне;

Для большинства газов, использующихся в промышленности, величина α больше β на порядок, что при повышении ∆t на 10 градусов даёт прирост давления на 100 атм.

Взрывы баллонов, содержащих сжатый кислород возможны при попадании масел и других жировых веществ во внутреннюю полость вентиля или баллона за счёт применения, например, необезжиренных уплотняющих прокладок. В кислородной среде масла и жиры окисляются до пероксидов, которые разлагаются взрывным способом, кроме того масла и жиры в струе кислорода способны самовоспламеняться, что также приводит к взрыву баллонов.

Баллоны с водородом представляют опасность при загрязнении водорода, содержащегося в них, кислородом в количестве > 1 % об., т. к. при этом образуется взрывоопасная смесь, воспламеняющаяся в взрывной форме при наличии соответствующего импульса.

Баллоны с ацетиленом представляют опасность из-за возможности этого вещества разлагаться со взрывом в отсутствии кислорода при давлении > 0,2 МПа. Из-за этого обстоятельства баллоны с ацетиленом заполнены активированным углём, который пропитан ацетоном, что позволяет повысить давление газа в баллоне до 1,6 МПа.

Аварии баллонов происходят также по причине отсутствия сведений о веществе, содержавшемся в них при полном расходовании его, а также отсутствия опознавательной окраски поверхности баллона и соответствующих надписей, в результате чего внутрь баллона может быть закачан или воздух или горючее вещество, что приведёт к образованию взрывоопасной смеси и взрыву при наличии соответственного импульса воспламенения.

Поскольку в баллонах могут содержаться и токсические вещества, при их разгерметизации существует также опасность отравления персонала токсическими веществами.

9.1.2 Основные меры безопасной эксплуатации сосудов, работающих под давлением

Основные способы и средства безопасной эксплуатации сосудов, работающих под давлением регламентируются нормативным документом «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением» (ПБ 03-576–03), которые распространяют своё действие на:

сосуды, работающие под давлением воды с температурой выше 115 оС или других нетоксичных, невзрывопожароопасных жидкостей при температуре, превышающей температуру кипения при давлении 0,07 МПа;

сосуды, работающие под давлением пара, газа или токсичных взрывопожароопасных жидкостей свыше 0,07 МПа;

баллоны, предназначенные для транспортировки и хранения сжатых, сжиженных и растворённых газов под давлением свыше 0,07 МПа;

цистерны и бочки для транспортировки и хранения сжатых и сжиженных газов; давление паров которых при температуре до 50 оС превышает давление 0,07 МПа;

цистерны и сосуды для транспортировки и хранения сжатых, сжиженных газов, жидкостей и сыпучих тел, в которых давление выше 0,07 МПа создаётся периодически для их опорожнения;

барокамеры.

Для управления работой и обеспечения безопасной эксплуатации сосуда в зависимости от назначения в соответствии с требованиями ПБ 03-576–03 должны быть оснащены:

запорной или запорно-регулирующей арматурой;

приборами для измерения давления;

приборами для измерения температуры;

предохранительными устройствами;

указателями уровня жидкости.

Запорная и запорно-регулирующая арматура должна устанавливаться на штуцерах, присоединённых непосредственно к сосуду или на трубопроводах, подводящих и отводящих из него рабочую среду. На маховике запорной арматуры должно быть указано направление его вращения при открывании или закрывании прохода для содержимого сосуда с соответствующей надписью. Сосуды для горючих веществ и токсических веществ 1 или 2 класса опасности по ГОСТ 12.1.007-76, испарителей с огневым или газовым обогревом должны иметь обратный клапан на линии между запорной арматурой сосуда и насосом (компрессором), автоматически закрывающимся давлением из сосуда, например, при отказе компримирующего устройства.

На каждом сосуде или его самостоятельной полости, имеющей другое давление, устанавливаются манометры прямого действия. Манометр устанавливается на штуцере сосуда или трубопроводе между сосудом и запорной арматурой. Между манометром и сосудом устанавливается трехходовой кран для периодической поверки прибора контрольным манометром. Манометры защищаются от воздействия агрессивной среды сосуда буферными жидкостями в сифонной трубке (например, маслом). Поверка манометра проводится не реже одного раза в год специализированными организациями (с последующим опломбированием), а не реже одного раза в шесть месяцев – владельцем сосуда с записью в соответствующий журнал.

Каждый сосуд (полость комбинированного сосуда) снабжается предохранительными устройствами от повышения давления выше допустимой величины. Такими устройствами являются:

пружинные предохранительные клапаны;

рычажно-грузовые клапаны;

импульсные предохранительные устройства (ИПУ), состоящие из главного предохранительного клапана (ГПК) и управляющего импульсного клапана (ИПК) прямого действия;

предохранительные устройства с разрушающимися мембранами (мембранные предохранительные устройства – МПУ);

другие устройства, применение которых согласовано с Ростехнадзором.

Установка рычажно-грузовых клапанов на передвижных сосудах не допускается из-за нарушения работы их механизма за счёт инерционных эффектов, возникающих при неравномерном движении.

Отбор газов из сосудов на технологические и другие нужды производится через редуцирующие устройства, снижающие исходное давление до необходимой величины.

Для группы сосудов, работающих при одном и том же давлении, допускается установка одного редуцирующего устройства с манометром, предохранительным клапаном на общем, подводящем трубопроводе до первого ответвления к одному из сосудов. В этом случае установки предохранительного устройства на самих сосудах необязательна, если в них исключена возможность повышения давления.

Количество предохранительных клапанов, их размеры и пропускная способность должны быть выбраны по расчёту так, чтобы в сосуде не создавалось давление, превышающее расчётное более, чем на 0,05 МПа для сосудов с давлением до 0,3 МПа; на 15% – для сосудов с давлением от 0,3 до 6 МПа и на 10% – для сосудов с давлением > 6 МПа.

Сбрасываемые при срабатывании предохранительных устройств токсичные, взрыво- и пожароопасные технологические среды направляются в закрытые системы для дальнейшей утилизации.

Мембранные предохранительные устройства устанавливаются в следующих случаях:

–  вместо рычажно-грузовых и пружинных предохранительных клапанов, когда последние в рабочих условиях не могут быть применимы вследствие их инерционности;

–  перед предохранительными клапанами в случаях, когда они не могут работать надёжно, например, из-за коррозии, примерзания и др. причин или при возможных утечках через клапаны токсичных, горючих и др. опасных веществ;

–  параллельно с предохранительными клапанами для увеличения пропускной способности системы сброса избыточного давления.

В сосудах, имеющих границу раздела фаз различных сред, устанавливаются указатели их уровня.

9.1.3 Установка, регистрация, техническое освидетельствование и разрешение на эксплуатацию сосудов, работающих под давлением

Установка сосудов. Устанавливаться сосуды должны на открытых площадках, где нет скопления людей или в отдельно стоящих зданиях. При невозможности обеспечения этих условий допускается установка сосудов:

–  в помещениях, примыкающих к производственному зданию при разделении их капитальной стеной;

–  заглублением в грунт при условии обеспечения доступа к арматуре и защиты стенок сосуда от почвенной и электрохимической коррозии.

Не допускается установка сосудов, работающих под давлением в жилых, общественных и бытовых зданиях, а также в примыкающих к ним помещениях.

Регистрация сосудов. Сосуды, на которые распространяются Правила ПБ 03-576–03, до пуска в работу регистрируются в органах Ростехнадзора. Регистрации не подлежат следующие сосуды:

сосуды, работающие при давлении > 0,07 МПа с рабочей средой, состоящей из взрывоопасных, пожароопасных или токсических веществ первого или второго класса опасности, у которых произведение давления в МПа (кг/см) на вместимость в м3 (л) не превышает 0,05 (500), а также сосуды с иной рабочей средой, у которых произведение давления на ёмкость  1,0 (10000);

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


ИНТЕРЕСНОЕ



© 2009 Все права защищены.