рефераты бесплатно
 

МЕНЮ


Реферат: Технологические основы производства цветных металлов: меди, алюминия, магния, титана

Реферат: Технологические основы производства цветных металлов: меди, алюминия, магния, титана

Федеральное агентство по образованию

Самарский государственный экономический университет

Кафедра промышленной технологии и товароведения


РЕФЕРАТ

по техническим основам производства

на тему: "Технологические основы производства цветных металлов: меди, алюминия, магния, титана"

Выполнили: студентки

2 курса ПЭФ ЭОТ

Толстова Татьяна

Липей Елена

Науч. рук.: Тарасов А.В.

Оценка: ______________

Самара - 2009


Содержание

Введение

Глава 1. Производство меди

Глава 2. Производство алюминия

Глава 3. Производство магния

Глава 4. Производство титана

Заключение

Список использованной литературы


Введение

Из цветных металлов важное промышленное значение имеют алюминий, медь, магний, свинец, цинк, олово, титан. Но стоимость цветных металлов по сравнению с черными высока, поэтому во всех случаях, когда это допустимо, их стараются заменить черными металлами или неметаллическими материалами.

Технология металлов - наука о свойствах, способах получения и обработки металлов.

Технология металлов и других конструкционных материалов является комплексной дисциплиной, содержащей основные сведения о способах получения машиностроительных материалов и средствах их физико-химической переработки с целью придания им свойств и конфигураций, необходимых в машиностроительном производстве. Технология металлов и материалов освещает технологические методы формообразования заготовок литьем, обработкой давлением, сваркой, а так же методы обработки материалов резанием.

Карл Маркс в первом томе "Капитала" указывает, что "экономические эпохи различаются не тем, что производится, а тем, как производится, какими средствами труда". Маркс отмечает, что доисторические времена подвергаются разделению "по материалу орудий и оружия: каменный век, бронзовый век, железный век". Свыше 6 млрд. тонн металла, заключенного в машинах, сооружениях, средствах транспорта и т.п., являются той базой, на которой основана современная материальная культура.

Развитие металлурги своими истоками уходит в глубокую древность. Добыча железной руды и получение из неё металла производились на территории древней Руси задолго до нашей эры.

Металлургия цветных металлов в дореволюционной России носила весьма ограниченный характер. Потребность страны в цветных металлах удовлетворялась преимущественно путём импорта. За годы индустриализации у нас в стране не только увеличено производство меди, свинца, цинка, но и созданы совершенно новые отрасли промышленности. Выпускающие металлы, ранее не производившиеся в России, такие как алюминий, магий, никель, титан, вольфрам, молибден, германий.

В области разработки и совершенствования технологии металлургического производства велика роль отечественных учёных, научно-исследовательских институтов и новаторов производства. Крупным вкладом в дело развития металлургии чугуна являются труды акад. М.А. Павлова, на основе которых проектируются и эксплуатируются современные доменные печи. Важные работы в области металлургии, особенно по внедрению кислорода в производство, выполнены под руководством акад. И.П. Бардина. У нас в стране зародилась наука о строении металлов - металлография (металловедение), основоположником которой был Д.К. Чернов. Это дало возможность поставить на научную основу процессы горячей обработки металлов.

Технологические процессы производства и обработки металлов непрерывно совершенствуются. Внедрение новой отечественной и зарубежной технологи даёт возможность повышать производительность действующих и проектируемых установок, готовить изделия с минимальным расходом металла. Особое внимание при этом уделяется механизации и автоматизации процессов.


Глава 1. Производство меди

Медь как золото и серебро встречается в самородном виде и поэтому в древности человек, который ещё не знал металлургии (восстановление металла из руд) уже мог находить и применять медь. В настоящее время медь производят металлургическим способом, отделением ее от кислорода и серы. Не смотря на то, что содержание меди в земной коре невелико (0,01%), она не рассеянный метал и концентрируется в медных рудах, где содержание её порядка 5%. По свойствам медь близка к серебру и золоту. Последние на воздухе не окисляются и поэтому называются благородными металлами; медь окисляется слабо, поэтому её называют полублагородным металлом. Чистая медь имеет ряд ценных технических свойств. Высокая пластичность, высокая электро- и теплопроводность, малая окисляемость - всё это обусловило широкое применение меди. Кроме того медь является основой важнейших сплавов - латуней и бронз. Высокая электропроводность меди обусловливает её преимущественное применение в электротехнике как проводникового металла. После серебра медь стоит на втором месте по электропроводности. Все примеси уменьшают электропроводность меди, наклеп так же уменьшает её электропроводность. Поэтому, если провода не должны быть особо прочными, то применяют отожженную медь. Для подвесных же проводов, где требуется прочность, применяют нагартованную медь или медь с небольшими добавками активных упрочнителей.

Сплавы меди с цинком (латуни).

Практическое применение имеют медные сплавы с содержанием цинка до 45%, которые называются латунями. При комнатной температуре практически применяемые латуни либо состоят из одних альфа кристаллов, либо являются смесью альфа и бета кристаллов.

Цинк повышает прочность и пластичность сплава. Максимальной пластичностью обладает сплав с 30% содержанием цинка. Литейные свойства латуней определяются взаимным расположением линий ликвидус и солидус. Латунь легко поддается пластической деформации, поэтому из латуней изготавливают катаный полуфабрикат (листы, ленты, профили). Латуни маркируют буквой Л., за которой следует цифра, показывающая среднее содержание меди в сплаве. Так как цинк дешевле меди, то чем больше в латуни цинка, тем она дешевле.

Кроме простых латуней - сплавов только меди и цинка, применяют специальные латуни, в которых для придания тех или иных свойств дополнительно вводят различные элементы: свинец для улучшения обрабатываемости, олово для повышения сопротивления коррозии в морской воде, алюминий и никель для повышения механических свойств.

Диаграмма состояния Cu - Zn

Микроструктура латуни, х 200 А) альфа  латунь

Б) альфа + бета латунь

Сплавы меди с оловом (оловянистые бронзы).

Высокие литейные свойства бронз определяются исключительно малой усадкой, которую имеют бронзы. Наиболее сложные по конфигурации отливки обычно изготавливают из бронзы. Жидкотекучесть бронзы невелика из-за большой разницы в температурах между линиями ликвидус и солидус. По этой же причине бронза не дает концентрированной усадочной раковины и для отливки из бронз высокой плотности она не годится.

Влияние олова на механические свойства меди аналогично влиянию цинка, но проявляется более резко. Уже при 5% олова пластичность начинает падать. Благодаря высокой технической стойкости бронз из них изготавливают арматуру (паровую, водяную и пр). Таким образом, основное применение бронз - сложные отливки, вкладыши подшипников и др. Для удешевления в большинство промышленных бронз добавляют 5 - 10% цинка. Цинк в этих количествах растворяется в меди и не оказывает существенного влияния на структуру. Фосфор вводят в бронзу как раскислитель и он устраняет хрупкие включения окиси олова. При наличии около 1% фосфора, такую бронзу называют фосфористой.

Бронзу маркируют начальными буквами Бр, затем следуют буквы, показывающие, какие легирующие элементы содержит бронза, а потом цифры, показывающие количество этих элементов в целых процентах.

Диаграмма состояния  Cu - Sn


Структура литой бронзы с 6% Sn, х 200 А) после отжига

Б) до отжига

Сплавы меди с алюминием, кремнием, бериллием и другими элементами.

Сплавы меди с алюминием, кремнием, бериллием и другими элементами же называются бронзами; в отличие от оловянистых их называют соответственно алюминиевыми, кремнистыми и т.д. Малой величиной усадки оловянистая бронза превосходит эти бронзы, но они в свою очередь превосходят оловянистую в других отношениях: по механическим свойствам, по химической стойкости, по жидкотекучести. Олово - дефицитный элемент, поэтому эти бронзы, кроме, разумеется, бериллиевой, дешевле оловянистой. Бериллиевая бронза отличается от остальных высокими твердостью и упругостью.

Свинцовистая бронза, содержащая 30% свинца, является высококачественным антифрикционным материалом, широко применяемым в машиностроении. Структура такого сплава состоит из отдельных зерен меди и свинца. Высокие антифрикционные свойства сплава обеспечиваются равномерным вкраплением свинца в медь.

Получение меди.

Медь получают главным образом пирометаллургическим способом, сущность которого состоит в производстве меди из медных руд, включающем ее обогащение, обжиг, плавку на полупродукт - штейн, выплавку из штейна черновой меди и ее очистку от примесей (рафинирование).

Для производства меди применяют медные руды, содержащие 1 - 6% Cu, а также отходы меди и ее сплавов. В рудах медь обычно находится в виде сернистых соединений, оксидов или гидрокарбонатов. Перед плавкой медные руды обогащают и получают концентрат. Для уменьшения содержания серы в концентрате его подвергают окислительному обжигу. Полученный концентрат переплавляют в отражательных или электрических печах. Восстанавливаются оксид меди (CuO) и высшие оксиды железа.

Сульфиды меди и железа сплавляются и образуют штейн, а расплавленные силикаты железа растворяют другие оксиды и образуют шлак. После этого расплавленный медный штейн заливают в конвертеры и продувают воздухом для окисления сульфидов меди и железа и получения черновой меди. Черновая медь содержит 98,4-99,4% Cu и небольшое количество примесей. Эту медь разливают в изложницы. Черновую медь рафинируют для удаления вредных примесей и газов. Сначала производят огневое рафинирование в отражательных печах. Примеси S, Fe, Ni, As, Sb и другие окисляются кислородом воздуха, подаваемым по стальным трубкам, погруженным в расплавленную черновую медь. Затем удаляют газы, для чего снимают шлак и погружают в медь сырое дерево. Пары воды перемешивают медь и способствуют удалению других газов. Ванну жидкой меди покрывают древесным углем и погружают в нее деревянные жерди. При сухой перегонке древесины, погруженной в медь, образуются углеводороды.

После огневого рафинирования получают медь чистотой 99-99,5%. Из нее отливают чушки для выплавки сплавов меди (бронзы и латуни) или плиты для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой от примесей меди (99,5% Cu). Электролиз ведут в ваннах, покрытых изнутри винипластом или свинцом. Аноды делают из меди огневого рафинирования, а катоды - из листов чистой меди. При пропускании постоянного тока анод растворяется, медь переходит в раствор, а на катодах разряжаются ионы меди.

Примеси (мышьяк, сурьма, висмут и др.) осаждаются на дно ванны, их удаляют и перерабатывают для извлечения этих металлов. Катоды выгружают, промывают и переплавляют в электропечах.

Упрощенная схема получения меди из сульфидных руд пирометаллургическим способом

Реализация этой схемы на различных переделах, особенно на начальных этапах до получения медного штейна, может проводиться в различных печах и в различных технологических вариантах. В рассматриваемой схеме первый передел медной руды - это обогащение. Однако бывают случаи, когда руды, обогащенные серой (свыше 35%), плавят без обогащения для извлечения из них не только меди, но и серы. Однако основная масса добываемой из недр земли сульфидной медной руды подвергается флотационному обогащению.

Глава 2. Производство алюминия

Сущность процесса производства алюминия заключается в получении безводного, свободного от примесей оксида алюминия (глинозема) с последующим получением металлического алюминия путем электролиза растворенного глинозема в криолите.

В современной алюминиевой промышленности применяется несколько способов получения окиси алюминия; их можно разбить на три группы.

Суть электротермических способов заключается в восстановлении алюминиевой руды в электропечи; примеси, имеющиеся в руде, восстанавливают до элементарного состояния и, переводя их в металл (кремнистый чугун), оставляют в шлаке невосстановленной только окись алюминия. В шлаке остаются также некоторые частично невосстановленные примеси. Полученный таким образом глинозем может использоваться для изготовления шлифовальных кругов и других абразивных изделий, но для производства высококачественного алюминия такой глинозем не пригоден.

Кислотные способы сводятся к тому, что алюминиевая руда подвергается обработке какой-либо кислотой, например соляной или серной. Кислота взаимодействует с окисью алюминия и получается соответствующая растворимая соль (например, хлористый алюминий). Основные примеси (кремнезем, окись кальция и др.) с кислотами не реагируют. Однако ряд примесей (например окислы железа) взаимодействуют со многими кислотами, что создает большие дополнительные трудности, так как полностью отделить соли железа от солей алюминия в растворе очень трудно. Эти способы применяются мало, однако на них существует много патентов и за границей и у нас. А поскольку руду можно обрабатывать кислотой только в кислотоупорной аппаратуре, это дополнительно удорожает и осложняет производство глинозема.

Щелочные способы в большинстве стран применяют и для получения чистой окиси алюминия. Суть щелочных способов заключается в том, что алюминиевая руда подвергается воздействию какой-либо щелочи.

В результате взаимодействия окиси алюминия, имеющейся в руде, например с едким натром, при определенных условиях образуются так называемые алюминаты натрия. Алюминаты щелочных металлов хорошо растворяются в воде. Основная масса имеющихся в алюминиевой руде примесей со щелочами не взаимодействует и поэтому остается в нерастворенном состоянии, а алюминий переходит в раствор. Но есть примеси, которые могут взаимодействовать со щелочами. Важнейшая из них - кремнезем. Освободить раствор от него не просто.

Однако щелочные способы экономичнее кислотных, потому что все операции можно проводить в стальной и чугунной аппаратуре.

Разберем более подробно один из наиболее употребительных щелочных способов получения окиси алюминия - способ спекания. Примерная схема этого способа представлена на рисунке:

Схема получения глинозёма способом спекания


Боксит и известняк дробят и дозируют с раствором соды в следующей пропорции: на один моль А1203 и Fe203 добавляют один моль соды и на один моль кремнезема в шихту вводятся два моля CaCOs

Полученную мокрую шихту тонко размалывают в шаровых мельницах и она выходит из них в виде жидкой пульпы. Пульпу после проверки и некоторой корректировки ее состава направляют в медленно вращающиеся трубчатые печи длиной 80-120 м и диаметром 2,5-3,5 м. Пульпу подают в "холодный" конец печи, где она встречается с отходящими печными газами, имеющими температуру порядка 300-400 °С. В результате влага испаряется; высохшая шихта, постепенно нагреваясь, перемещается в горячую зону, в которой температура достигает 1200-1250 "С.

По мере нагревания в шихте протекают сложные химические процессы. В печи спекания протекают многие другие процессы, которые приводят к образованию алюминатов и ферритов кальция, некоторых других комплексных соединений.

Продукты реакций выделяются из печи в виде так называемого опека (напоминающего пористую гальку серого цвета), состоящего главным образом из алюмината натрия, феррита натрия и силиката кальция.

Полученный спек охлаждают, дробят и подвергают выщелачиванию, сущность которого заключается в воздействии на спек слабых растворов соды. В результате выщелачивания из спека в раствор переходит алюминат натрия, а также происходит гидролиз ферритов натрия. Образовавшаяся гидроокись железа выпадает в осадок, а раствор обогащается едким натром. Полученный раствор отделяют от нерастворившихся примесей отстаиванием и фильтрацией.

Наряду с этими желательными реакциями происходят и реакции, осложняющие производство чистой окиси алюминия. Так, например, в раствор переходит некоторое количество силикатов натрия, что заставляет проводить специальную операцию, называемую обескремниванием раствора. Сущность этой операции заключается в длительном нагревании с перемешиванием алюминатного раствора и известкового молока в прочных закрытых цилиндрических сосудах со сферическими днищами - автоклавах - при температуре 150-180°С. В результате протекает ряд химических процессов.

После фильтрации раствора от взвешенных в нем частиц чистый алюминатный раствор подвергают карбонизации. Назначением этой операции является выделение из раствора чистой гидроокиси алюминия, не загрязненной другими веществами. Эту операцию проводят в цилиндрических баках с мешалками - карбонизаторах, в которые подают углекислый газ (обычно очищенные печные газы). Под действием С02 алюминатный раствор разлагается, из него выпадает белый осадок - гидрат окиси алюминия, который отделяется от раствора соды. Оставшийся раствор соды после добавления в него некоторого количества свежей соды возвращают на подготовку шихты для очередного спекания, а гидрат окиси алюминия прокаливают в трубчатых печах (аналогичных печам спекания) при температуре 1200 °С, в результате чего получается безводный, негигроскопичный глинозем, вполне пригодный для последующего электролиза.

Основное сырье для производства алюминия - алюминиевые руды: бокситы, нефелины, алуниты, каолины. Наибольшее значение имеют бокситы.

Металлический алюминий получают электролизом расплавленных солей, т.е. пропуская постоянный электрический ток через расплавленный криолит, в котором растворен глинозем. Сущность этого процесса можно понять, рассмотрев рисунок:

Электролизер состоит из основного корпуса 1, футерованного внутри угольными блоками; в его подовую часть с помощью шин 2 и 3 подведен отрицательный полюс источника тока. Над корпусом подвешен угольный анод 8, к которому с помощью шин 9 и 10 присоединен положительный полюс источника напряжения. Если в электролизер залить расплав, состоящий из криолита и глинозема, опустить в этот расплав анод и пропускать через расплав постоянный ток большой силы и необходимого напряжения, то через определенное время на дне электролизера можно обнаружить расплавленный алюминий 4 под слоем расплавленного электролита 6, состоящего из криолита Na3AlF6, в котором при температуре, близкой к 1000 С, обычно растворено от 1 до 10% глинозема. Электролит поддерживается в расплавленном состоянии только за счет теплоты, выделяющейся при прохождении через него электрического тока, поэтому часть электролита всегда застывает на холодных стенках и образует твердую застывшую корку 5, на которую сверху насыпают порошкообразную окись алюминия 7.

Схематический чертёж алюминиевой ванны с верхним подводом тока к самообжигающемуся аноду

 
В настоящее время наиболее широко применяют электролизеры, рассчитанные на силу тока, превышающую 100 кА, с заранее обожженными анодами или с верхним подводом тока к самообжигающимся анодам (см. рисунок ниже). Получение алюминия в таком электролизере осуществляется непрерывно в течение двух-трех лет; при этом выполняются следующие основные операции: наблюдение за составом электролита, обеспечение своевременной загрузки глинозема и извлечения алюминия, наблюдение за напряжением и обслуживание самообжигающейся анодной системы.

Процесс электролиза сводится к разряду ионов А13+ и 02+, из которых состоит глинозем, который непрерывно расходуется. Криолит не подвергается непосредственному электролизу и расходуется мало, однако из-за его физических потерь (испарения, выплескивания и т.д.), а также взаимодействия его отдельных составляющих с примесями глинозема и футеровкой электролизера приходится систематически следить за его уровнем в ванне (толщина слоя 18-25 см) и химическим составом.

Некоторые заводы вводят в электролит небольшие добавки CaF2 и MgF2 для снижения температуры плавления электролита на несколько десятков градусов.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.