рефераты бесплатно
 

МЕНЮ


Курсовая работа: Расчет редуктора

R2муфт. = – (Fмуфт. * (L1 + L2 + L3)) / (L2 + L3)

= – (2160 * (130 + 75 + 120)) / (75 + 120)

= -3600 H

Из условия равенства суммы сил нулю:

R4муфт. = – Fмуфт. + R1

= – 2160 + 3600

= 1440 H


10. Построение эпюр моментов на валах

 

10.1 Расчёт моментов 1-го вала

1 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = 0 Н · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 0 = 0 H · мм

2 сечение

Mx = Ry1 * L1 =

580,78 * 130 = 75501,4 H · мм

My = Rx1 * L1 =

(-211,387) * 130 = -27480,267 H · мм

Mмуфт. = R1 · L1 =

324,923 * 130 = 42239,99 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (75501,42 + -27480,2672) 1/2 + 42239,99 = 122586,903 H · мм

3 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = R1 · (L1 + L2) =

324,923 * (130 + 65) = 63359,985 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 63359,985 = 63359,985 H · мм

4 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = R1 · (L1 + L2 + L3) – R2 · L3 =

324,923 * (130 + 65 + 120) – 852,923 * 120 = 0 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 0 = 0 H · мм

10.2 Расчёт моментов 2-го вала

1 сечение

Mx = 0 Н · мм

My = 0 Н · мм

M = (Mx12 + My12) 1/2 = (02 + 02) 1/2 = 0 H · мм

2 сечение

Mx = Ry1 * L1 =

(-3329,467) * 75 = -249710,008 H · мм

My = Rx1 * L1 =

(-789,053) * 75 = -59179 H · мм

M = (Mx12 + My12) 1/2 = (-249710,0082 + -591792) 1/2 = 256626,659 H · мм


3 сечение

Mx = Ry1 * (L1 + L2) + Fy2 * L2 =

(-3329,467) * (75 + 55) + 4466,616 * 55 = -187166,8 H · мм

My = Rx1 * (L1 + L2) + Fx2 * L2 =

(-789,053) * (75 + 55) + 1625,715 * 55 = -13162,608 H · мм

M = (Mx12 + My12) 1/2 = (-187166,82 + -13162,6082) 1/2 = 187629,063 H · мм

4 сечение

Mx = 0 Н · мм

My = 0 Н · мм

M = (Mx12 + My12) 1/2 = (02 + 02) 1/2 = 0 H · мм

10.3 Расчёт моментов 3-го вала

1 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = 0 Н · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 0 = 0 H · мм

2 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = Fмуфт. · L1 =

2160 * 130 = 280800 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 280800 = 280800 H · мм

3 сечение

Mx = Ry2 * L2 =

2748,687 * 75 = 206151,508 H · мм

My = Rx2 * L2 =

1000,44 * 75 = 75033 H · мм

Mмуфт. = Fмуфт. · (L1 + L2) – R1 · L2 =

2160 * (130 + 75) – 3600 * 75 = 172800 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (206151,5082 + 750332) 1/2 + 172800 = 392181,848 H · мм

4 сечение

Mx = 0 Н · мм

My = 0 Н · мм

Mмуфт. = Fмуфт. · (L1 + L2 + L3) – R1 · (L2 + L3) =

2160 * (130 + 75 + 120) – 3600 * (75 + 120) = 0 H · мм

M = (Mx12 + My12) 1/2 + Mмуфт. = (02 + 02) 1/2 + 0 = 0 H · мм


11. Проверка долговечности подшипников

 

11.1 1-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 308 средней серии со следующими параметрами:

d = 40 мм – диаметр вала (внутренний посадочный диаметр подшипника);

D = 90 мм – внешний диаметр подшипника;

C = 41 кН – динамическая грузоподъёмность;

Co = 22,4 кН – статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = R1 + R1 (муфт.) = 618,053 + 324,923 = 942,976 H;

Pr2 = R2 + R2 (муфт.) = 618,053 + 852,923 = 2089,029 H.

Здесь R1 (муфт.) и R2 (муфт.) – реакции опор от действия муфты. См. раздел пояснительной записки «Расчёт реакций в опорах».

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.

Осевая сила, действующая на вал: Fa = 0 Н.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х · V · Pr2 + Y · Pa) · Кб · Кт,

где – Pr2 = 2089,029 H – радиальная нагрузка; Pa = Fa = 0 H – осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19 [1]); температурный коэффициент Кт = 1 (см. табл. 9.20 [1]).

Отношение Fa / Co = 0 / 22400 = 0; этой величине (по табл. 9.18 [1]) соответствует e = 0,19.

Отношение Fa / (Pr2 · V) = 0 / (2089,029 · 1) = 0 £ e; тогда по табл. 9.18 [1]: X = 1; Y = 0.

Тогда: Pэ = (1 · 1 · 2089,029 + 0 · 0) · 1,6 · 1 = 1508,762 H.

Расчётная долговечность, млн. об. (формула 9.1 [1]):

L = (C / Рэ) 3 = (41000 / 1508,762) 3 = 20067,319 млн. об.

Расчётная долговечность, ч.:

Lh = L · 106 / (60 · n1) = 20067,319 · 106 / (60 · 1465,5) = 228219,254 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162–85 (см. также стр. 220 [1]), здесь n1 = 1465,5 об/мин – частота вращения вала.

11.2 2-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 309 средней серии со следующими параметрами:

d = 45 мм – диаметр вала (внутренний посадочный диаметр подшипника);

D = 100 мм – внешний диаметр подшипника;

C = 52,7 кН – динамическая грузоподъёмность;

Co = 30 кН – статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 3421,689 H;

Pr2 = 2886,601 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.

Осевая сила, действующая на вал: Fa = 0 Н.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х · V · Pr1 + Y · Pa) · Кб · Кт,

где – Pr1 = 3421,689 H – радиальная нагрузка; Pa = Fa = 0 H – осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19 [1]); температурный коэффициент Кт = 1 (см. табл. 9.20 [1]).

Отношение Fa / Co = 0 / 30000 = 0; этой величине (по табл. 9.18 [1]) соответствует e = 0,19.

Отношение Fa / (Pr1 · V) = 0 / (3421,689 · 1) = 0 £ e; тогда по табл. 9.18 [1]: X = 1; Y = 0.

Тогда: Pэ = (1 · 1 · 3421,689 + 0 · 0) · 1,6 · 1 = 5474,702 H.

Расчётная долговечность, млн. об. (формула 9.1 [1]):

L = (C / Рэ) 3 = (52700 / 5474,702) 3 = 891,97 млн. об.

Расчётная долговечность, ч.:

Lh = L · 106 / (60 · n2) = 891,97 · 106 / (60 · 465,238) = 31953,896 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162–85 (см. также стр. 220 [1]), здесь n2 = 465,238 об/мин – частота вращения вала.


11.3 3-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 312 средней серии со следующими параметрами:

d = 60 мм – диаметр вала (внутренний посадочный диаметр подшипника);

D = 130 мм – внешний диаметр подшипника;

C = 81,9 кН – динамическая грузоподъёмность;

Co = 48 кН – статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = R1 + R1 (муфт.) = 2925,091 + 3600 = 6525,091 H;

Pr2 = R2 + R2 (муфт.) = 2925,091 + 1440 = 3268,182 H.

Здесь R1 (муфт.) и R2 (муфт.) – реакции опор от действия муфты. См. раздел пояснительной записки «Расчёт реакций в опорах».

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.

Осевая сила, действующая на вал: Fa = 0 Н.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х · V · Pr1 + Y · Pa) · Кб · Кт,

где – Pr1 = 6525,091 H – радиальная нагрузка; Pa = Fa = 0 H – осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19 [1]); температурный коэффициент Кт = 1 (см. табл. 9.20 [1]).

Отношение Fa / Co = 0 / 48000 = 0; этой величине (по табл. 9.18 [1]) соответствует e = 0,19.

Отношение Fa / (Pr1 · V) = 0 / (6525,091 · 1) = 0 £ e; тогда по табл. 9.18 [1]: X = 1; Y = 0.

Тогда: Pэ = (1 · 1 · 6525,091 + 0 · 0) · 1,6 · 1 = 10440,146 H.

Расчётная долговечность, млн. об. (формула 9.1 [1]):

L = (C / Рэ) 3 = (81900 / 10440,146) 3 = 482,761 млн. об.

Расчётная долговечность, ч.:

Lh = L · 106 / (60 · n3) = 482,761 · 106 / (60 · 186,095) = 43236,071 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162–85 (см. также стр. 220 [1]), здесь n3 = 186,095 об/мин – частота вращения вала.

Подшипники

Валы Подшипники
1-я опора 2-я опора
Наименование d, мм D, мм Наименование d, мм D, мм
1-й вал шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 308 средней серии 40 90 шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 308 средней серии 40 90
2-й вал шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 309 средней серии 45 100 шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 309 средней серии 45 100
3-й вал шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 312 средней серии 60 130 шарикоподшипник радиальный однорядный (по ГОСТ 8338–75) 312 средней серии 60 130

12. Уточненный расчёт валов

 

12.1 Расчёт 1-го вала

Крутящий момент на валу Tкр. = 74920,602 H·мм.

Для данного вала выбран материал: сталь 45. Для этого материала:

– предел прочности sb = 780 МПа;

– предел выносливости стали при симметричном цикле изгиба

s-1 = 0,43 · sb = 0,43 · 780 = 335,4 МПа;

– предел выносливости стали при симметричном цикле кручения

t-1 = 0,58 · s-1 = 0,58 · 335,4 = 194,532 МПа.

2 сечение

Диаметр вала в данном сечении D = 45 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14 мм, глубина шпоночной канавки t1 = 5,5 мм.

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:

sv = Mизг. / Wнетто = 122586,903 / 7611,295 = 16,106 МПа,

здесь


Wнетто = p · D3 / 32 – b · t1 · (D – t1) 2/ (2 · D) =

3,142 · 453 / 32 – 14 · 5,5 · (45 – 5,5) 2/ (2 · 45) = 7611,295 мм3,

где b=14 мм – ширина шпоночного паза; t1=5,5 мм – глубина шпоночного паза;

– среднее напряжение цикла нормальных напряжений:

sm = Fa / (p · D2 / 4) = 0 / (3,142 · 452 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 [1];

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 [1];

– ks = 1,8 – находим по таблице 8.5 [1];

– es = 0,85 – находим по таблице 8.8 [1];

Тогда:

Ss = 335,4 / ((1,8 / (0,85 · 0,97)) · 16,106 + 0,2 · 0) = 9,539.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 74920,602 / 16557,471 = 2,262 МПа,

здесь


Wк нетто = p · D3 / 16 – b · t1 · (D – t1) 2/ (2 · D) =

3,142 · 453 / 16 – 14 · 5,5 · (45 – 5,5) 2/ (2 · 45) = 16557,471 мм3,

где b=14 мм – ширина шпоночного паза; t1=5,5 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 [1];

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 [1].

– kt = 1,7 – находим по таблице 8.5 [1];

– et = 0,73 – находим по таблице 8.8 [1];

Тогда:

St = 194,532 / ((1,7 / (0,73 · 0,97)) · 2,262 + 0,1 · 2,262) = 34,389.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 9,539 · 34,389 / (9,5392 + 34,3892) 1/2 = 9,192

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

3 сечение

Диаметр вала в данном сечении D = 40 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7 [1]).

Коэффициент запаса прочности по нормальным напряжениям:

Ss = s-1 / ((ks / (es · b)) · sv + ys · sm), где:

– амплитуда цикла нормальных напряжений:


sv = Mизг. / Wнетто = 63359,985 / 6283,185 = 10,084 МПа,

здесь

Wнетто = p · D3 / 32 =

3,142 · 403 / 32 = 6283,185 мм3

– среднее напряжение цикла нормальных напряжений:

sm = Fa / (p · D2 / 4) = 0 / (3,142 · 402 / 4) = 0 МПа, Fa = 0 МПа – продольная сила,

– ys = 0,2 – см. стр. 164 [1];

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 [1];

– ks/es = 3,102 – находим по таблице 8.7 [1];

Тогда:

Ss = 335,4 / ((3,102 / 0,97) · 10,084 + 0,2 · 0) = 10,401.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:

tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 74920,602 / 12566,371 = 2,981 МПа,

здесь


Wк нетто = p · D3 / 16 =

3,142 · 403 / 16 = 12566,371 мм3

– yt = 0.1 – см. стр. 166 [1];

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 [1].

– kt/et = 2,202 – находим по таблице 8.7 [1];

Тогда:

St = 194,532 / ((2,202 / 0,97) · 2,981 + 0,1 · 2,981) = 27,534.

Результирующий коэффициент запаса прочности:

S = Ss · St / (Ss2 + St2) 1/2 = 10,401 · 27,534 / (10,4012 + 27,5342) 1/2 = 9,73

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

4 сечение

Диаметр вала в данном сечении D = 36 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.

Коэффициент запаса прочности по касательным напряжениям:

St = t-1 / ((k t / (et · b)) · tv + yt · tm), где:

– амплитуда и среднее напряжение отнулевого цикла:


tv = tm = tmax / 2 = 0,5 · Tкр. / Wк нетто = 0,5 · 74920,602 / 8360,051 = 4,481 МПа,

здесь

Wк нетто = p · D3 / 16 – b · t1 · (D – t1) 2/ (2 · D) =

3,142 · 363 / 16 – 12 · 5 · (36 – 5) 2/ (2 · 36) = 8360,051 мм3

где b=12 мм – ширина шпоночного паза; t1=5 мм – глубина шпоночного паза;

– yt = 0.1 – см. стр. 166 [1];

– b = 0.97 – коэффициент, учитывающий шероховатость поверхности, см. стр. 162 [1].

– kt = 1,7 – находим по таблице 8.5 [1];

– et = 0,77 – находим по таблице 8.8 [1];

Тогда:

St = 194,532 / ((1,7 / (0,77 · 0,97)) · 4,481 + 0,1 · 4,481) = 18,271.

Радиальная сила муфты, действующая на вал, найдена в разделе «Выбор муфт» и равна Fмуфт. = 191 Н. Приняв у вала длину посадочной части равной длине l = 191 мм, Находим изгибающий момент в сечении:

Страницы: 1, 2, 3, 4, 5, 6


ИНТЕРЕСНОЕ



© 2009 Все права защищены.