рефераты бесплатно
 

МЕНЮ


Курсовая работа: Расчет привода с трехступенчатым редуктором

Курсовая работа: Расчет привода с трехступенчатым редуктором

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Детали машин »

КУРСОВОЙ ПРОЕКТ

По дисциплине: «Детали машин »

На тему: «Расчет привода с трехступенчатым редуктором»

Разработал

студент гр. КПМОпр-08

Котлярова О

Руководитель

Нечепаев В.А.

Донецк 2010


РЕФЕРАТ

Курсовой проект содержит: 24 страницы, 4 рисунка, 5 использованных источников.

В курсовом проекте рассмотрена работа основных узлов привода произведены расчеты основных деталей механизма, расчет быстроходной ступени трехступенчатого цилиндрического редуктора, выбор полумуфты, расчет шпоночного соединения и выбор подшипников качения.

расчет на прочность, ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ, КИНЕМАТИЧЕСКИЙ РАСЧЕТ, ЗУБЧАТОЕ зацепление, контактные напряжения, ОПОРНЫЕ РЕАКЦИИ, шпоночное соединение, подшипник качения.


Содержание

Введение

1.Схема привода и его описание

2. Определение мощности электродвигателя и его выбор

3. Кинематический расчет привода

4. Определение нагрузок по ступеням

5. Выбор материала зубчатых колёс и определение допустимых напряжений

6. Расчет зубчатых передач

7. Расчет геометрических параметров валов редуктора

8 Проверочный расчет шпонки

9 Выбор муфт

10 Выбор подшипников на выходном вал

11. Определение размеров корпуса редуктора и необходимых конструктивных размеров шестерни выходного вала

12 Выбор смазки редуктора

Выводы

Список используемой литературы


Введение

Технический уровень всех отраслей народного хозяйства в значительной мере определяется уровнем развития машиностроения. На основе развития машиностроения осуществляется комплексная механизация и автоматизация производственных процессов в промышленности, строительстве, сельском хозяйстве, на транспорте.

Государством перед машиностроением поставлена задача значительного повышения эксплуатационных и качественных показателей при непрерывном росте объема ее выпуска.

Одним из направлений решения этой задачи является совершенствование конструкторской подготовки студентов высших учебных заведений.

Выполнением курсового проекта по «Деталям машин» завершается общетехнический цикл подготовки студентов. При выполнении моей работы активно используется знания из ряда пройденных предметов: механики, сопротивления материалов, технологий металлов и др.

Объектом курсового проекта является привод с цилиндрическим трёхступенчатым редуктором с раздвоенной быстроходной ступенью, использующие большинство деталей и узлов общего назначения.


1.Схема привода и его описание

В данном курсовом проекте рассмотрен привод представленный на рисунке1.1.

Рис. 1.1. Схема привода.

Данный привод состоит из:

1-         двигатель

2-         муфта МУВП

3-         шевронная цилиндрическая передача

4-         косозубая цилиндрическая передача

5-         прямозубая цилиндрическая передача

6-         зубчатая муфта

7-         рабочий орган

Технические характеристики привода:

- мощность на рабочем органе привода Pвых=13кВт

- частота вращения вала двигателя nдв=1000об/мин

- передаточное число редуктора i=46


2. Определение мощности электродвигателя и его выбор

В данном разделе производится выбор эл/двигателя.

Мощность привода определяется по формуле:

где, ηпривода- КПД привода.

КПД привода определяется из соотношения:

где, η1 - КПД зубчатой передачи (0.97)

 η2 - КПД одной пары подшипников (0.99);

 η3 - КПД муфты (0.98).

В результате получаем:

В итоге можно выбрать эл/двигатель [2] – АИР 200L12/6 (n=1000об/мин, P=17кВт).


3. Кинематический расчет привода

В данном разделе производится разбивка общего передаточного числа по ступеням.

Для быстроходной ступени передаточное число вычисляем из соотношения:

u1=(1,1…1,5) ;

u1=1,1=7.46

По ГОСТ 21426-75 выбираем стандартное значение передаточного числа – 7.1.

Вычислим передаточное число промежуточной ступени редуктора, для этого определим общее передаточное число для промежуточной и тихоходной ступени

uобщ=uр/u1;

uобщ=46/7.1=6,48

Определим передаточное число промежуточной ступени редуктора:

u2=(1,1…1,5) ;

u2=1,1=2.8

По ГОСТ 21426-75 выбираем стандартное значение передаточного числа – 2.8.

Определим значение передаточного числа тихоходной ступени редуктора:


По ГОСТ 21426-75 выбираем стандартное значение передаточного числа – 2.24.

Уточняем передаточное число редуктора:

uр=u1 u2 u3

uр=7.1ּ 2.8ּ2.24=44.5


4. Определение нагрузок по ступеням

4.1 Определение мощностей на каждом валу

Мощность на приводном валу:

Pпр=Рвхּ η3ּ η2

Pпр=17ּ0.98ּ0.99=16.5кВт

Мощность на первом промежуточном валу

Pпп=Рпр ּ η2 1 η2

Pпп=16.5ּ0.972 0.99=15.4кВт

Мощность на втором промежуточном валу

Pвп=Рпп ּ η 1 η2

Pвп=15.4ּ0.97ּ0.99=14.8кВт

Мощность на выходном валу:

Pв=Рвп ּ η 1 η2

Pв=14.8ּ0.97ּ0.99=14.2кВт

Мощность на рабочем органе:

Pвых=Рвп ּ η3

Pвых=14.2ּ0.98=13.9кВт


4.2 Определение крутящих моментов на валах привода

Крутящий момент на валу двигателя:

Тдв=Рдв/ω;

где ω – частота вращения двигателя определяемая из соотношения:

.;

Т.е. вращающий момент на валу двигателя получаем:

Тдв=17∙103/105=162Н∙м

Крутящий момент на приводном валу:

Твх=Тдв∙η3;

Твх=162∙0.98=159Нм

Крутящий момент на первом промежуточном валу

Тпп=Твх u1 η2 1 η2

Tпп=159ּ7.1ּ0.972 0.99=1052Нм

Крутящий момент на втором промежуточном валу

Твп=Тппuּ2 η 1 η2

Pвп=1052ּ2.8ּ0.97ּ0.99=2827Нм

Крутящий момент на выходном валу:


Тв=Твп uּ3 η 1 η2

Тв=2827ּ2.24ּ0.97ּ0.99=6081Нм

Крутящий момент на рабочем органе:

Твых=Рв ּ η3

Твых=6081ּ0.98=5959Нм

4.2 Определение скоростей на валах привода

Скорость на приводном валу:

ωвх= ωдв=105с-1;

Скорость на первом промежуточном валу

ωпп=ωвх u1

ωпп=105/7.1ּ=14.8с-1

Скорость на втором промежуточном валу

ωвп=ωпп/u2

Pвп=14.8/2.8=5.3c-1

Скорость на выходном валу:

ωв=ωвп /u3

ωв=5.3/2.24=2.4c-1

Скорость на рабочем органе:

ωвых=ωв =2.4 c-1

Полученные данные сведем в таблицу 4.1:

Вал

двигателя

Приводной

вал

Первый

промежуточный

вал

Второй

промежуточный

вал

Выходной

вал

Рабочий

орган

Мощность, P, кВТ 17 16.5 15.4 14.8 14.2 13.9
Крутящий момент, Т, Нм 162 159 1052 2827 6081 5959

Скорость вращения, ω, с-1

105 105 14.8 5.3 2.4 2.4

5. Выбор материала зубчатых колёс и определение допустимых напряжений

5.1 Выбор материала зубчатых колес

Поскольку зубчатому зацеплению приходится передавать большие крутящие моменты то необходимо выбирать материал с твердостью поверхности ≥350НВ. Т.е. выбираем для шестерни материал сталь 45 с объёмной закалкой и твёрдостью поверхности зубьев 37HRC, для колеса выбираем сталь 40 с поверхностной закалкой и твёрдостью зубьев 38HRC.

 5.2 Определяем контактное напряжение:

Допускаемые контактные напряжения при расчетах па прочность определяются отдельно для зубьев шестерни [σ]Н1 и колеса [σ]Н2 в следующем порядке.

а) Определить коэффициент долговечности KHL:

где NHO - число циклов перемены напряжений, соответствующее пределу выносливости (в данном случае 36.4);

N - число циклов перемены напряжений за весь срок службы (наработка).

N=573ωLh

Здесь ω — угловая скорость соответствующего вала, с-1;

Lh—срок службы привода (ресурс), ч (5000).

В результате получаем:

Для зубчатых колес на входном валу:

N=573∙105∙5000=3.01∙108

Для зубчатых колес на первом промежуточном валу:

N=573∙14.8∙5000=4.24∙107

Для зубчатых колес на втором промежуточном валу:

N=573∙5,3∙5000=1,5∙107

Для зубчатых колес на выходном валу:

N=573∙2.4∙5000=6.9∙106

Поскольку во всех случаях N≥Nно то принимаем KHL=1.

б)      Определяем допускаемые контактные напряжения по формуле

[σ]н=(14∙HRC+170)kHL;

-для шестерни

[σ]н=(14∙37+170)1 =688МПа

-для зубчатого колеса

[σ]н=(14∙38+170)1 =702МПа

5.3 Определение допускаемых напряжений изгиба

Проверочный расчет зубчатых колес определяется по допускаемым предельным напряжениям, которые определяются в следующем порядке:

а) Определить коэффициент долговечности KHL:

где NFO - число циклов перемены напряжений, для всех сталей равен 4∙106.

Поскольку во всех случаях N≥NHL то принимаем KHL=1.

б) определяем допустимые напряжения изгиба:

[σ]f=[σ]f0 KHL

В данном случае выбираем[σ]f0=310, т.е.

[σ]f=310∙1=310МПа


6. Расчет зубчатых передач

6.1 Определение межосевого расстояния

Межосевое расстояние определяется по формуле:

где а) Ка -вспомогательный коэффициент. Для косозубых передач Ка = 43. для прямозубых- Ка = 49.5;

 б) ψа=b2/aw - коэффициент ширины венца колеса, равный 0,28...0,36 -для шестерни, расположенной симметрично относительно опор в проектируемых нестандартных одноступенчатых цилиндрических редукторах; ψа = 0,2...0,25 - для шестерни, консольно расположенной относительно опор в открытых передачах;

в)      u - передаточное число редуктора или открытой передачи

г)       Т2 - вращающий момент на тихоходом валу редуктора
 д) [σ]н - допускаемое контактное напряжение колеса с менее прочным зубом или среднее допускаемое контактное напряжение. Н/мм2;

е)       Кнв - коэффициент неравномерности нагрузки по длине зуба. Для прирабатывающихся зубьев Кнв.

Полученное значение межосевого расстояния aw для нестандартных передач округлить до ближайшего значения из ряда нормальных линейных размеров.

Определим значение межосевого расстояния первой ступени.

Поскольку первая передача шевронная раздвоенная то в данном случае Т2=Твх/2=1052/2=526Нм

Определим значение межосевого расстояния второй ступени

Определим значение межосевого расстояния третей ступени

6.2 Определение модуля зацепления

Модуль зацепления определяется по формуле:

, мм

где Кт – вспомогательный коэффициент, для прямозубых передач Кт=6,8, для косозубых Кт=5,3;

d2=2awu/(u+1) – делительный диаметр колеса, мм;

b2=ψ∙aw – ширина венца. мм;

[σ]f - допускаемое напряжение изгиба материала колеса с менее прочным зубом.

В итоге получаем:

- первая ступень:

d2=2∙155∙7,1/(7,1+1)=272мм

b2=0,25∙155=39мм

Выбираем значения модуля из стандартного ряда m=1.75мм

-вторая ступень:

d2=2∙237∙2.8/(2.8+1)=350мм

b2=0,28∙237=66.4мм

Выбираем значения модуля из стандартного ряда m=4.5мм

-третья ступень:

d2=2∙348∙2.24/(2.24+1)=401мм

b2=0,28∙348=97.4мм

Выбираем значения модуля из стандартного ряда m=7мм

6.3 Определение угла наклона зубьев

Угол наклона зубьев определяется по формуле:

Определим угол наклона зубьев первой ступени:

Определим угол наклона зубьев второй ступени:

6.4 Определение числа зубьев

Определение суммарного числа зубьев

- для прямозубых колес (третья ступень):

zΣ= z1+z2=2aw/m

zΣ=2∙348/7=99.4

Выбираем количество зубьев 99.

-для косозубых колес (первая и вторая ступень)

zΣ= z1+z2=2awсоsβ/m

zΣ1= z1+z2=2∙155соs9/1.75=175

zΣ2= z1+z2=2∙237соs14/4.5=102

Определяем число зубьев шестерни и колеса:

z2= zΣ-z1

Для первой ступени:

Принимаем 22 зуба

z2= 175-22=153

Для второй ступени:

Принимаем 27 зубьев.

z2= 102-27=75

Для третьей ступени:

Принимаем 31 зуб.

z2= 99-31=68


6.5 Определение фактического передаточного числа

Определим фактическое передаточное число uф и проверим его отклонение Δu по формулам:

uф=z2/z1

Для первой ступени:

uф=153/22=6.95

Для второй ступени:

uф=75/27=2.78

Для третьей ступени:

uф=68/31=2,19

6.5 Определение основных геометрических параметров передач

Геометрические параметры передач определяются по формулам.

Параметр Шестерня Колесо
прямозубая косозубая прямозубая косозубая
Диаметр делительный

d1=m∙z1

d1=m∙z1∙cosβ

d1=m∙z2

D2=m∙z2∙cosβ

Вершин зубьев

dв1=d1+2∙m

dв2=d2+2∙m

Впадин зубьев

df1=d1-2.4∙m

df2=d2-2.4∙m

Ширина венца

b1=b2+(2..4)мм

b2=ψ∙aw


Рассчитаем геометрические параметры первой передачи

Параметр Шестерня Колесо
Диаметр делительный

d1=1.75∙22cos9=40мм

d2=1.75∙153∙cos9=265мм

Вершин зубьев

dв1=40+2∙1,75=43.5

dв2=265+2∙1.75=268.5мм

Впадин зубьев

df1=40-2.4∙1.75=35.8

df2=265-2.4∙1.75=260.8мм

Ширина венца

b1=40+(2..4)=42мм

b2=0.25∙155≈40мм

Рассчитаем геометрические параметры второй передачи

Параметр Шестерня Колесо
Диаметр делительный

d1=4.5∙27∙cos14=118мм

D2=4.5∙75∙cos14=327мм

Вершин зубьев

dв1=118+2∙4.5=127

dв2=327+2∙4.5=336

Впадин зубьев

df1=118-2.4∙4.5=107

df2=327-2.4∙4.5=316мм

Ширина венца

b1=65+(2..4)=67мм

b2=0.28∙237≈65мм

Рассчитаем геометрические параметры третьей передачи

Параметр Шестерня Колесо
Диаметр делительный

d1=7∙31=214мм

d1=7∙68=476мм

Вершин зубьев

dв1=214+2∙7=218мм

dв2=476+2∙7=490мм

Впадин зубьев

df1=214-2.4∙7=197мм

df2=490-2.4∙7=473.2мм

Ширина венца

b1=97+(2..4)=100мм

b2=0,28∙348≈97мм

6.6 Проверочный расчет тихоходной ступени редуктора

Проверим зубчатое зацепление на контактные напряжения по формуле:

;

где К- вспомогательный. Для прямозубых передач К=436;

Ft=2T2∙103/d2 – окружная сила в зацеплении, Н

KHα – коэффициент, учитывающий распределение нагрузки между зубьями. Для прямозубых колёс KHα=1,

KHv – коэффициент динамической нагрузки, зависящий от окружной скорости колес и степени точности передачи.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.