рефераты бесплатно
 

МЕНЮ


Дипломная работа: Проектирование системы кондиционирования воздуха

- отверстия защищаются снаружи от атмосферных осадков.

При установке вентилятора должны быть обеспечены:

- минимальный зазор между колесом или лопастями и кожухом;

- прочность крепления тяг и шпонок;

- уравновешенность колеса.

Пусковые приспособления для электродвигателей должны находиться в удобном для управления месте.

Соединение вентиляторов с электродвигателями:

- основание под электродвигатель и вентилятор при непосредственном их соединении на муфтах должны быть общими для агрегата.

- при устройстве ременной передачи необходимо правильно выбрать материал и тип ремня

- ременную передачу ограждают и устанавливают таким образом, чтобы нижняя часть ремня была ведущей. Валы электродвигателя и вентилятора должны быть параллельны.

2.6 Эксплуатация центробежных вентиляторов

Подготовка к пуску вентилятора:

- проверить и убедиться в надежности крепления к фундаменту, наличии и закреплении ограждений вращающихся частей, в отсутствии посторонних предметов, наличии надежного заземления;

- проверить наличие и уровень масла в ходовой части;

- проверить вал вручную и убедиться в легкости хода, в отсутствии заеданий;

- проверить соединительную муфту, состояние резиновых колец;

- закрыть осевой направляющий аппарат.

Пуск вентилятора:

- соблюдая меры безопасности, включить электродвигатель вентилятора согласно инструкции;

- убедиться, что направление вращения совпадает с указателями, нет стуков, шумов, вибрации;

- когда двигатель наберет номинальные обороты (через 30— 40 с), постепенно открывая осевой направляющий аппарат, довести нагрузку вентилятора до требуемой величины;

- сделать не более двух последовательных пусков холодного электродвигателя или одного горячего.

При необходимости большего количества последовательных пусков они должны выполняться через 15 мин.

После первых 48 часов работы:

- отключите вентиляторную группу от источника питания и заблокируйте рубильник. Проверьте надежность фиксации установочными или

крепежными винтами подшипников, рабочего колеса и шкивов.

- проверьте натяжение ремня и при необходимости отрегулируйте его. Натяжение ремня считается оптимальным, если при запуске ремень пробуксовывает в течение одной-двух секунд, так как это позволяет обеспечить продолжительный срок службы ремня и значительно снизить вибрацию вентиляторной группы. При регулировании натяжения убедитесь в сохранении соосности шкивов.

Если центральный кондиционер находится длительное время в бездействии, необходимо периодически вручную проворачивать крыльчатку вентилятора, чтобы предотвратить деформацию вала вентилятора, а, следовательно, его разбалансировку. Кроме того, проворачивание крыльчатки позволяет поддерживать постоянную смазку всей поверхности подшипников. В противном случае смазочное масло застаивается в нижней части подшипника, в то время как наружная поверхность верхней его части подвергается окислению, что может вызвать выход подшипника из строя.

Обслуживание вентилятора во время работы:

- систематически следить за тем, чтобы вентилятор имел плавный и бесшумный ход, рабочее колесо имело правильное направление вращения и не задевало бы корпус;

- своевременно регулировать производительность вентилятора осевым направляющим аппаратом;

- проверить на ощупь температуру ходовой части в местах расположения подшипников — она не должна превышать 70°С;

- периодически проверять уровень масла по маслоуказателю и при необходимости доливать его.

- прочистить канал, соединяющий масляную ванну и масло-указатель и отверстие в верхней крышке маслоуказателя, а также стеклянную трубку;

- следить за состоянием соединительной муфты;

- один раз в три — шесть месяцев осматривать подшипники и при обнаружении коррозии или трещин немедленно заменять их.

Остановка вентилятора:

- закрыть осевой направляющий аппарат; выключить электродвигатель с помощью коммутаторной аппаратуры;

- закрыть шибер на всасывающей линии.

2.7 Ремонт центробежных вентиляторов

Ремонт центробежных вентиляторов выполняется также как и ремонт центробежных насосов (См. пункт 2.3.) .

2.8 Выбор расчетных параметров наружного и внутреннего воздуха

2.8.1 Расчетные параметры наружного воздуха

Для большинства общественных зданий, в том числе и для предприятий торговли и общественного питания, принимаются такие значения расчетных параметров, более высокие значения которых в теплый период года наблюдаются в данной местности менее 200 часов в году. Расчетные параметры наружного воздуха приведены в таблице.


Принимаем расчетные параметры наружного воздуха для города Москва: для летнего периода t =+28°С относительная влажность φ= 40%.

2.8.2 Расчетные параметры внутреннего воздуха

Под расчетными параметрами внутреннего воздуха понимают такие значения температуры, относительной влажности и скорости движения воздуха, которые должны поддерживаться в кондиционируемых помещениях либо по технологическим требованиям, либо из соображений комфорта, см. таблицу 2 [3, стр. 57, таб. 2.1]

Принимаем расчетные параметры внутреннего воздуха для города Москва: для летнего периода t = +25°С относительная влажность φ= 50%.

2.9 Техника безопасности при монтаже, эксплуатации и обслуживании кондиционера

Система управления машинами должна иметь минимально число рукояток и кнопок, быстро останавливать движение paбoчих органов машины, находящихся в любом положении, исключать самопроизвольный или случайный пуск механизмов, предусматривать возможность включения и выключения машины с рабочего места. Рукоятки, рычаги, ручки, маховики, кнопки должны иметь удобный доступ.

Кнопки «пуск» должны быть заметны и утоплены на 3…5 мм от уровня крышки коробки.

Сигнализация опасности применяется как в виде самостоятельной системы, так и в сочетании с предохранительными устройствами. Весьма эффективным является сочетание блокирующих и предохранительных устройств.

В конструкциях машин должно быть предусмотрено уменьшение шума на месте работы в пределах установленных норм.

Работы по ремонту, техническому осмотру, регулировке агрегата и приборов необходимо проводить при отключенном от электросети агрегате.

Работники магазина не должны производить никаких работ по регулировке и настройке приборов автоматики. В случае технических неисправностей или возникновения аварийного состояния агрегат следует немедленно отключить и вызвать механика.

Запрещается размещать посторонние предметы на ограждениях агрегата и вокруг него.

Электродвигатели, электропроводка, электроаппараты и прочие электротехнические устройства должны удовлетворять действующим «Правилам устройства и безопасной эксплуатации электроустановок». Части электрических устройств, находящихся под напряжением, должны исключать возможность прикосновения к ним. Это достигается применением специальных ограждений, изоляцией токоведущих частей, использованием блокировок и расположением их в местах, недоступных для работающих, а при необходимости применением защитного заземления. Электропроводку рекомендуется заключать в газовые трубы или металлические рукава и прокладывать внутри станины, пола и т.п. Трубы, которые по конструктивным соображениям нельзя проложить внутри станины, разрешается прокладывать снаружи, но при этом их следует располагать в желобах, глубина которых позволяет скрыть трубопровод заподлицо с наружной поверхностью станины или металлоконструкции.

Станина машины, корпус электродвигателя, кожух электроаппаратуры, как и другие металлические части, которые могут оказаться под напряжением, должны быть заземлены, снабжены специальным болтом с шайбой. Болты должны быть защищены от коррозии и иметь чистую поверхность для контакта с заземляющей шиной. Болт должен иметь знак «Заземление» или «Земля». При возникновении сотрясений или вибраций при работе необходимо принять меры против ослабления контакта (контргайки, контрящие шайбы и т.п.). Заземлять оборудование, установленное на движущихся мастях, необходимо с помощью гибких проводников.

Если приводы электрооборудования, устанавливаемые на машине, изолированы от ее станины, то в их конструкции следует предусматривать устройства для самостоятельного заземления.

Вблизи оборудования должны быть вывешены инструкции по эксплуатации, схемы установки и трубопроводов, правила техники безопасности и правила оказания помощи пострадавшим.

Для оказания пострадавшим доврачебной помощи необходимо иметь в наличии индивидуальные средства защиты (аптечки).

Запрещается:

- включать установку при отсутствии защитного заземления или зануления электродвигателей, пусковых приборов, охлаждаемого оборудования и других металлических частей;

- эксплуатировать оборудование после истечения срока испытания изоляции электрической сети и защитного заземления; оно должно проводиться ежегодно с применением приборов;

- снимать защитные кожухи с токонесущих частей магнитных пускателей, клеммных коробок электродвигателей, приборов автоматики и других частей, находящихся под напряжением;

- снимать ограждения с движущихся и вращающихся частей агрегата;

- эксплуатировать оборудование при снятых защитных кожухах с частей оборудования, находящихся под напряжением;

- прикасаться к движущимся частям включенного в сеть агрегата независимо от того, находится он в работе или в периоде автоматической остановки;

- эксплуатировать оборудование при неисправных приборах автоматики и защиты;

- выполнять работы по ремонту оборудования, регулировке приборов лицам, не знакомым с работой машины;

- устанавливать на электрощитках самодельные предохранители (жучки) вместо стандартных плавких предохранителей (пробок).


3. Расчетная часть

Рис. 18. План установки кондиционирования воздуха для столовой на 100 посадочных мест. I – кухня ; II – торговый зал.

Столовая находится на втором этаже типового двухэтажного здания. Наружная стена (восточная) выполнена из кирпичной кладки толщиной 370 мм. Внутренние стены также выполнены из кирпичной кладки толщиной 250 мм. Теплоизоляционное покрытие – плиты жесткие минераловатные - присутствует только у наружной стены.

Оконные проемы с двойным спаренным переплетом и расстоянием между стеклами 15 мм.

Кровля шатровая, покрытая профнастилом. Утеплителем кровли служит слой рубероида толщиной 20мм.

Высота потолков помещения – 3 м.

3.1 Тепловлажностный баланс кондиционируемого помещения

Расчетные параметры воздуха в кондиционируемых помещениях устанавливаются в результате притока и отвода тепла и влаги в эти помещения. Так, в летнее время, как правило, в помещениях выделяется избыточное количество тепла и влаги. Поэтому задача установки кондиционирования воздуха — охлаждение и осушение воздуха в помещении. В зимний период, наоборот, воздух, подаваемый в кондиционируемое помещение, нагревают и увлажняют для компенсации тепло- и влагопотерь кондиционируемых помещений.

Тепло, поступаемое в помещение (со знаком +) или уходящее из него (со знаком—), подсчитывают по формуле:

∑Q = Qл + Qоб + Qосв ± Qм ± Qогр + Qрад + Qинф, квт

где: Qл — тепловыделение от людей, вт;

Qо6 — тепловыделение от технологического оборудования;

Qосв — тепловыделение от осветительных приборов;

Qм—тепловыделение от обрабатываемых технологических материалов;

Qoгp — теплопоступление через ограждающие конструкции;

Qpaд — теплопоступление от солнечной радиации;

Qинф — теплопоступление от инфильтрации наружного воздуха.

Общее количество влаги, поступаемое в помещение (со знаком + ), либо поглощаемое в нем (со знаком —), подсчитывают по формуле:

∑W = Wл + Woб ± Wм + W инф кг/сек,

где Wл — влаговыделение от людей;

Wo6 — влаговыделение от технологического оборудования;

WM — влаговыделение от обрабатываемых материалов;

Wинф — влаговыделение от инфильтрации наружного воздуха

При расчете установки кондиционирования воздуха необходимо знать не только величину суммарных тепло- и влаговыделений, но и их отношение Eп.


EП = ∑Q/∑W кдж/кг.

Эта величина называется тепловлажностным отношением. Если помещение, в котором имеются постоянные теплопритоки ∑Q и влагопритоки ∑W, не оборудовано установкой кондиционирования воздуха, то параметры воздуха в помещении начнут изменяться (температура, влажность и энтальпия воздуха увеличиваются). Процесс этого изменения в i—d диаграмме изображается прямой линией, проходящей через точку П с заданными температурой и влажностью в помещении (пунктирная линия на рис. 18). Угол наклона этой линии зависит от величины EП. Чтобы удержать положение точки П (т. е. чтобы температура и влажность в помещении не менялись), в летнее время в помещение подают более холодный и более сухой воздух, состояние которого на рис. 18 обозначено точкой K. Эта точка тоже должна лежать на линии с наклоном Eп (но ниже точки П), так как только при этом условии воздух, поданный в помещение, одновременно поглотит избыток тепла ∑Q и избыток влаги ∑W, в результате чего положение точки П останется неизменным.

Положение точки К на линии с наклоном Еп определяется допустимой разностью (перепадом) температур ∆t между приточным воздухом (точка К) и воздухом в помещении (точка П).

Перепад температур выбирается, исходя из принятого способа распределения воздуха, а также высоты помещения. На практике для торговых залов предприятий общественного питания ∆t —4 : 8 °С.

Для производственных помещений при подаче воздуха в рабочую зону перепад ∆t принимается в пределах 6—9 °С, а при подаче воздуха под потолком — может быть увеличен до 12—14 °С

При этом меньшие значения ∆t соответствуют помещениям с высотой до 3,0 м.


Рис. 18. Изображение процесса изменения состояния воздуха в помещении в i—d диаграмме влажного воздуха.

3.2 Определение теплопритоков

Теплоприток от людей.

Количество тепла выделяемое людьми Qл (в Вт) подсчитывают по формуле:

Qл= qчел · n ,

где qчел - величина тепловыделения одним человеком в зависимости от температуры воздуха в помещении и рода выполняемой работы.

qчел = 70 вт [1. стр. 259, таб. 76]

n - число людей, одновременно находящихся в помещении.

Qл= 70 · 100 = 7000 вт

Теплоприток от освещения.

Теплопоступления от осветительных приборов рассчитываются по формуле:

Qосв= А · F,

где А – удельный теплоприток от осветительных приборов на 1 м2 площади. Для предприятий общественного питания А = 4.5 вт/м2

F – площадь помещения

Qосв= 4.5 · 1200 = 5400 вт

Тепловыделение от пищи (по укрупненным показателям):

Qм = Qодн. порц. · n , вт

где Qодн. порц - тепловыделение от одной порции пищи.

Qодн. порц = 17.5 вт [1. стр. 265]

Qм = 17.5 · 100 = 1750 вт

Теплопритоки через наружные ограждения.

Определяем толщину теплоизоляционного слоя наружной стены по формуле:

δиз = λиз [1/K – (1/λн + ∑δi/λi + 1/ λв] , м.

где К – нормативный коэффициент теплопередачи ограждения, вт/(м2 · град)

К = 0.75 вт/(м2 · град) [1. стр. 74]

λн - коэффициент теплопередачи от воздуха к наружной поверхности ограждения, вт/(м2 · град)

λн = 23.3 вт/(м2 · град) [1. стр. 67 таб. 14]

λв - коэффициент теплоотдачи от внутренней поверхности ограждения к воздуху данного помещения, вт/(м2 · град)

λв = 9 вт/(м2 · град) [1. стр. 67 таб. 14]

δi , δиз –толщины изоляционного и других слоев материалов, составляющих конструкцию ограждения, м.

δкирп. кладки = 0.37 м

δштукатурки = 0.02 м

λиз , λi – коэффициенты теплопроводности изоляционного и строительных материалов, вт/(м · град)

λиз (мин. плит) =0.084 вт/(м · град) [1. стр. 68 таб. 15]

λкирп. кладки = 0.82 вт/(м · град) [1. стр. 69 таб. 15]

λштукатурки = 0.9 вт/(м · град) [1. стр. 69 таб. 15]

δиз = 0.084 [1/0.75 – (1/23.3 + 0.37/0.82 + 0.02/0.9 + 0.02/0.9 + 1/9)] = 0.067 м.

Плиты жесткие минераловатные по ГОСТ 10140 – 62 выпускаются следующих размеров: длина – 1000мм , ширина – 500мм , толщина – 40,

50 и 60 мм. Принимаем толщину слоя плиты 60 мм.

Определяем значение действительного коэффициента теплопередачи через ограждения Кд для наружной (восточной) стены.

Кд = 1/(1/ λн + ∑δi/λi + 1/ λв) + δиз. пр/λиз , вт/(м2 · град)

где λн = 23.3 вт/(м2 · град) [1. стр. 67 таб. 14]

λв = 9 вт/(м2 · град) [1. стр. 67 таб. 14]

δштукатурки = 0.02 м

δкирп. кладки = 0.37 м

δиз. пр = 0.06 м

λкирп. кладки = 0.82 вт/(м · град) [1. стр. 69 таб. 15]

λштукатурки = 0.9 вт/(м · град) [1. стр. 69 таб. 15]

λиз (мин. плит) = 0.084 вт/(м · град) [1. стр. 68 таб. 15]

Кд = 1/(1/ 23.3 + 0.37/0.82 + 0.02/0.9 + 0.02/0.9 + 1/ 9) + 0.06/0.084 = 0.735 вт/(м2 · град)

Теплоприток через наружную (восточную) стену определяем по формуле:

Qвост. ст = Кд · F · ∆t

∆t = (tн–tв) =28.5 – 25 = 3.5 °С

F = 40 · 3 = 120 м2

Qвост. ст = 0.735 · 120 · 3.5 = 308.7 вт

Определяем значение действительного коэффициента теплопередачи Кд для внутренних стен :

Кд = 1/(1/ λн + ∑δi/λi + 1/ λв), вт/(м2 · град)

где λн = 23.3 вт/(м2 · град) [1. стр. 67 таб. 14]

λв = 9 вт/(м2 · град) [1. стр. 67 таб. 14]

δштукатурки = 0.02 м

δкирп. кладки = 0.25 м

λкирп. кладки = 0.82 вт/(м · град) [1. стр. 69 таб. 15]

λштукатурки = 0.9 вт/(м · град) [1. стр. 69 таб. 15]

Кд = 1/(1/ 23.3 + 0.25/0.82 + 0.02/0.9 + 0.02/0.9 + 1/ 9) = 2 вт/(м2 · град)

Теплоприток через внутренние стены определяется по формуле:

Qвост. ст = Кд · F · ∆t , вт

Температура воздуха в соседних помещениях 22 °С.

∆t = (tн–tв) =22 – 25 = - 3 °С

F = 30 · 3 + 30 ·3 + 40 · 3= 300 м2

Qвост. ст = 2 · 300 · (-3) = - 1800 вт

Определяем значение действительного коэффициента теплопередачи Кд для кровли :

Кд = 1/(1/ λн + ∑δi/λi + 1/ λв), вт/(м2 · град)

где λн = 23.3 вт/(м2 · град) [1. стр. 67 таб. 14]

λв = 9 вт/(м2 · град) [1. стр. 67 таб. 14]

δ жел. бет. плиты = 0.3 м

δ возд. просл. средн .= 1.5 м

δ проф. настила = 0.0015 м

δ рубероид = 0.02 м

λ жел. бет. плиты = 1.4 вт/(м · град) [1. стр. 68 таб. 15]

λ возд. просл. = 0.02553 вт/(м · град) [1. стр. 69 таб. 15]

λ проф. настила (сталь)= 58 вт/(м · град) [1. стр. 68 таб. 15]

λ рубероид = 0.16 вт/(м · град) [1. стр. 68 таб. 15]

Кд = 1/(1/ 23.3 + 0.3/1.4 + 1.5/0.02553 + 0.0015/58 + 0.02/0.16 + 1/9) = 0.0169 вт/(м2 · град)

Определяем теплоприток через кровлю:

Qкровли = Ккр · Fкр · ∆t + Ккр · Fкр · ∆tсолн. , вт [4. стр. 56]

где ∆t = (tн–tв) =28.5 – 25 = 3.5 °С

∆tсолн. = 10 °С [2. стр. 58]

Fкр = 1200 м2

Qкровли = 0.0169 · 1200 · 3.5 + 0.0169 · 1200 · 10 = 273.78 вт

Определяем значение действительного коэффициента теплопередачи Кд для пола :

Кд = 1/(1/ λн + ∑δi/λi + 1/ λв), вт/(м2 · град)

где λн = 23.3 вт/(м2 · град) [1. стр. 67 таб. 14]

λв = 9 вт/(м2 · град) [1. стр. 67 таб. 14]

δ жел. бет. плиты = 0.3 м

δ паркета (дуб) = 0.02 м

λ жел. бет. плиты = 1.4 вт/(м · град) [1. стр. 68 таб. 15]

λ паркета (дуб) = 0.23 вт/(м · град) [1. стр. 68 таб. 15]

Кд = 1/(1/ 23.3 + 0.3/1.4 + 0.02/0.23 + 1/9) = 2.2 вт/(м2 · град)

Определяем величину теплопритока через пол:


Qпол = Кд · F · ∆t , вт

где ∆t = (tн–tв) =22 – 25 = - 3 °С

F = 1200 м2

Qпол = 2.2 · 1200 · (-3) = - 7920 вт

Таб. 3. Сводная таблица теплопритоков

Ограждения

Кд, вт/(м2 ·град)

F , м2

∆t , °С

Qогр , вт

Восточная стена 0.735 120 3.5 308.7
Внутренние стены 2 300 -3 -1800
Кровля 0.0169 1200 3.5 273.78
Пол 2.2 1200 -3 -7920

Для расчета тепла от солнечной радиации через массивные ограждения избыточную разность температур принимаем:

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.