рефераты бесплатно
 

МЕНЮ


Производство пластических масс

Производство пластических масс

Содержание

Введение 2

Наполненные и супернаполненные пластики. 3

Литье при низком давлении 10

Требования к материалу изделия 10

Требования к пресс-форме 11

Литьевые машины для литья при низком давлении 11

Преимущества литья под давлением изделий из термопластов 12

с применением горячеканальных форм 12

Литье с газом 16

Литье тонкостенных изделий 20

Список литературы 26

Введение

Данная работа посвящена общим аспектам и технологии производства

пластических масс.

Пластические массы, пластмассы, пластики, материалы, содержащие в

своём составе полимер, который в период формования изделий находится в

вязкотекучем или высокоэластичном состоянии, а при эксплуатации - в

стеклообразном или кристаллическом состоянии. В зависимости от характера

процессов, сопутствующих формованию изделий, П. м. делят на реактопласты и

термопласты. К числу реактопластов относят материалы, переработка в изделия

которых сопровождается химической реакцией образования сетчатого полимера -

отвердением; при этом пластик необратимо утрачивает способность переходить

в вязкотекучее состояние (раствор или расплав). При формовании изделий из

термопластов не происходит отвердения, и материал в изделии сохраняет

способность вновь переходить в вязкотекучее состояние.

П. м. обычно состоят из нескольких взаимно совмещающихся и не

совмещающихся компонентов. При этом, помимо полимера, в состав П. м. могут

входить наполнители полимерных материалов, пластификаторы, понижающие

температуру текучести и вязкость полимера, стабилизаторы полимерных

материалов, замедляющие его старение, красители и др. П. м. могут быть

однофазными (гомогенными) или многофазными (гетерогенными, композиционными)

материалами. В гомогенных П. м. полимер является основным компонентом,

определяющим свойства материала. Остальные компоненты растворены в полимере

и способны улучшать те или иные его свойства. В гетерогенных П. м. полимер

выполняет функцию дисперсионной среды (связующего) по отношению к

диспергированным в нём компонентам, составляющим самостоятельные фазы. Для

распределения внешнего воздействия на компоненты гетерогенного пластика

необходимо обеспечить прочное сцепление на границе контакта связующего с

частицами наполнителя, достигаемое адсорбцией или химической реакцией

связующего с поверхностью наполнителя.

Наполненные и супернаполненные пластики.

Наполнитель в П. м. может быть в газовой или конденсированной фазах. В

последнем случае его модуль упругости может быть ниже (низкомодульные

наполнители) или выше (высокомодульные наполнители) модуля упругости

связующего.

К числу газонаполненных пластиков относятся пенопласты - материалы

наиболее лёгкие из всех П. м.; их кажущаяся плотность составляет обычно от

0,02 до 0,8 г/см3.

Низкомодульные наполнители (их иногда называют эластификаторами), в

качестве которых используют эластомеры, не понижая теплостойкости и

твёрдости полимера, придают материалу повышенную устойчивость к

знакопеременным и ударным нагрузкам (см. табл. 1), предотвращают

прорастание микротрещин в связующем. Однако коэффициент термического

расширения эластифицированных П. м. выше, а деформационная устойчивость

ниже, чем монолитных связующих. Эластификатор диспергируют в связующем в

виде частиц размером 0,2-10 мкм. Это достигается полимеризацией мономера на

поверхности частиц синтетических латексов, отверждением олигомера, в

котором диспергирован эластомер, механическим перетиранием смеси жёсткого

полимера с эластомером. Наполнение должно сопровождаться образованием

сополимера на границе раздела частиц эластификатора со связующим. Это

обеспечивает кооперативную реакцию связующего и эластификатора на внешнее

воздействие в условиях эксплуатации материала. Чем выше модуль упругости

наполнителя и степень наполнения им материала, тем выше деформационная

устойчивость наполненного пластика. Однако введение высокомодульных

наполнителей в большинстве случаев способствует возникновению остаточных

напряжений в связующем, а следовательно, понижению прочности и монолитности

полимерной фазы.

Свойства П. м. с твёрдым наполнителем определяются степенью

наполнения, типом наполнителя и связующего, прочностью сцепления на границе

контакта, толщиной пограничного слоя, формой, размером и взаимным

расположением частиц наполнителя. П. м. с частицами наполнителя малых

размеров, равномерно распределёнными по материалу, характеризуются

изотропией свойств, оптимум которых достигается при степени наполнения,

обеспечивающей адсорбцию всего объёма связующего поверхностью частиц

наполнителя. При повышении температуры и давления часть связующего

десорбируется с поверхности наполнителя, благодаря чему материал можно

формовать в изделия сложных форм с хрупкими армирующими элементами. Мелкие

частицы наполнителя в зависимости от их природы до различных пределов

повышают модуль упругости изделия, его твёрдость, прочность, придают ему

фрикционные, антифрикционные, теплоизоляционные, теплопроводящие или

электропроводящие свойства.

Для получения П. м. низкой плотности применяют наполнители в виде

полых частиц. Такие материалы (иногда называемые синтактическими пенами),

кроме того, обладают хорошими звуко- и теплоизоляционными свойствами.

Применение в качестве наполнителей природных и синтетических

органических волокон, а также неорганических волокон (стеклянных,

кварцевых, углеродных, борных, асбестовых), хотя и ограничивает выбор

методов формования и затрудняет изготовление изделий сложной конфигурации,

но резко повышает прочность материала. Упрочняющая роль волокон в

волокнитах, материалах, наполненных химическими волокнами (т. н.

органоволокнитах), карбоволокнитах (см. Углеродопласты)и стекловолокнитах

проявляется уже при длине волокна 2-4 мм. С увеличением длины волокон

прочность возрастает благодаря взаимному их переплетению и понижению

напряжений в связующем (при высокомодульном наполнителе), локализованных по

концам волокон. В тех случаях, когда это допускается формой изделия,

волокна скрепляют между собой в нити и в ткани различного плетения. П. м.,

наполненные тканью (текстолиты), относятся к слоистым пластикам,

отличающимся анизотропией свойств, в частности высокой прочностью вдоль

слоёв наполнителя и низкой в перпендикулярном направлении. Этот недостаток

слоистых пластиков отчасти устраняется применением т. н. объемно-тканых

тканей, в которых отдельные полотна (слои) переплетены между собой.

Связующее заполняет неплотности переплетений и, отверждаясь, фиксирует

форму, приданную заготовке из наполнителя.

В изделиях несложных форм, и особенно в полых телах вращения, волокна-

наполнители расположены по направлению действия внешних сил. Прочность

таких П. м. в заданном направлении определяется в основном прочностью

волокон; связующее лишь фиксирует форму изделия и равномерно распределяет

нагрузку по волокнам. Модуль упругости и прочность при растяжении изделия

вдоль расположения волокон достигают очень высоких значений (см. табл. 1).

Эти показатели зависят от степени наполнения П. м.

Для панельных конструкций удобно использовать слоистые пластики с

наполнителем из древесного шпона или бумаги, в том числе бумаги из

синтетического волокна (Древесные пластики, Гетинакс). Значительное

снижение массы панелей при сохранении жёсткости достигается применением

материалов трёхслойной, или сэндвичевой, конструкции с промежуточным слоем

из пенопласта или сотопласта.

Основные виды термопластов. Среди термопластов наиболее разнообразно

применение полиэтилена, поливинилхлорида и полистирола, преимущественно в

виде гомогенных или эластифицированных материалов, реже газонаполненных и

наполненных минеральными порошками или синтетическими органическими

волокнами.

П. м. на основе полиэтилена легко формуются и свариваются в изделия

сложных форм, они устойчивы к ударным и вибрационным нагрузкам, химически

стойки, отличаются высокими электроизоляционными свойствами

(диэлектрическая проницаемость 2,1-2,3) и низкой плотностью. Изделия с

повышенной прочностью и теплостойкостью получают из полиэтилена,

наполненного коротким (до 3 мм)стекловолокном. При степени наполнения 20%

прочность при растяжении возрастает в 2,5 раза, при изгибе - в 2 раза,

ударная вязкость - в 4 раза и теплостойкость - в 2,2 раза.

Жёсткая П. м. на основе поливинилхлорида - винипласт, в том числе

эластифицированный (ударопрочный), формуется значительно труднее

полиэтиленовых пластиков, но прочность её к статическим нагрузкам намного

выше, ползучесть ниже и твёрдость выше. Более широкое применение находит

пластифицированный поливинилхлорид - пластикат. Он легко формуется и

надёжно сваривается, а требуемое сочетание в нём прочности, деформационной

устойчивости и теплостойкости достигается подбором соотношения

пластификатора и твёрдого наполнителя.

П. м. на основе полистирола формуются значительно легче, чем из

винипласта, их диэлектрические свойства близки к свойствам полиэтиленовых

П. м., они оптически прозрачны и по прочности к статическим нагрузкам мало

уступают винипласту, но более хрупки, менее устойчивы к действию

растворителей и горючи. Низкая ударная вязкость и разрушение вследствие

быстрого прорастания микротрещин - свойства, особенно характерные для

полистирольных пластиков, устраняются наполнением их эластомерами, т. е.

полимерами или сополимерами с температурой стеклования ниже - 40 °С.

Эластифицированный (ударопрочный) полистирол наиболее высокого качества

получают полимеризацией стирола на частицах бутадиен-стирольного или

бутадиен-нитрильного латекса. Материал, названный АБС, содержит около 15%

гель-фракции (блок- и привитые сополимеры полистирола и указанных

сополимеров бутадиена), составляющей граничный слой и соединяющей частицы

эластомера с матрицей из полистирола. Морозостойкость материала

ограничивает температура стеклования эластомера, теплостойкость -

температура стеклования полистирола.

Теплостойкость перечисленных термопластов находится в пределах 60-80

°С, коэффициент термического расширения высок и составляет 1 * 10-4, их

свойства резко изменяются при незначительном изменении температуры,

деформационная устойчивость под нагрузкой низкая. Этих недостатков отчасти

лишены термопласты, относящиеся к группе иономеров, например сополимеры

этилена, пропилена или стирола с мономерами, содержащими ионогенные группы

(обычно ненасыщенные карбоновые кислоты или их соли). Ниже температуры

текучести благодаря взаимодействию ионогенных групп между макромолекулами

создаются прочные физические связи, которые разрушаются при размягчении

полимера. В иономерах удачно сочетаются свойства термопластов,

благоприятные для формования изделий, со свойствами, характерными для

сетчатых полимеров, т. е. с повышенной деформационной устойчивостью и

жёсткостью. Однако присутствие ионогенных групп в составе полимера понижает

его диэлектрические свойства и влагостойкость.

П. м. с более высокой теплостойкостью (100-130 °С) и менее резким

изменением свойств с повышением температуры производят на основе

полипропилена, полиформальдегида, поликарбонатов, полиакрилатов,

полиамидов, особенно ароматических полиамидов. Быстро расширяется

номенклатура изделий, изготавливаемых из поликарбонатов, в том числе

наполненных стекловолокном.

Для деталей, работающих в узлах трения, широко применяются пластики из

алифатических полиамидов, наполненных теплопроводящими материалами,

например графитом.

Особенно высоки химическая стойкость, прочность к ударным нагрузкам и

диэлектрические свойства пластиков на основе политетрафторэтилена и

сополимеров тетрафторэтилена. В материалах на основе полиуретанов удачно

сочетается износостойкость с морозостойкостью и длительной прочностью в

условиях знакопеременных нагрузок. Полиметилметакрилат используют для

изготовления оптически прозрачных атмосферостойких материалов (см. также

Стекло органическое).

Объём производства термопластов с повышенной теплостойкостью и

органических стекол составляет около 10% общего объёма всех полимеров,

предназначенных для изготовления П. м. отверждения

Отсутствие реакций отверждения во время формования термопластов даёт

возможность предельно интенсифицировать процесс переработки. Основные

методы формования изделий из термопластов - литьё под давлением, экструзия,

вакуумформование и пневмоформование. Поскольку вязкость расплава

высокомолекулярных полимеров велика, формование термопластов на литьевых

машинах или экструдерах требует удельных давлений 30-130 Мн/м = (300-1300

кгс/см2).

Дальнейшее развитие производства термопластов направлено на создание

материалов из тех же полимеров, но с новыми сочетаниями свойств,

применением эластификаторов, порошковых и коротковолокнистых наполнителей.

Потребление П. м. в строительстве непрерывно возрастает. При

увеличении мирового производства П. м. в 1960-70 примерно в 4 раза объём их

потребления в строительстве возрос в 8 раз. Это обусловлено не только

уникальными физико-механическими свойствами полимеров, но также и их

ценными архитектурно-строительными характеристиками. Основные преимущества

П. м. перед др. строительными материалами - лёгкость и сравнительно большая

удельная прочность. Благодаря этому может быть существенно уменьшена масса

строительных конструкций, что является важнейшей проблемой современного

индустриального строительства. Наиболее широко П. м. (главным образом

рулонные и плиточные материалы) используют для покрытия полов и др.

отделочных работ, герметизации, гидро- и теплоизоляции зданий, в

производстве труб и санитарно-технического оборудования. Их применяют и в

виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч.

светопрозрачных), оконных переплётов, дверей, пневматических строительных

конструкций, домиков для туристов, летних павильонов и др.

П. м. занимают одно из ведущих мест среди конструкционных материалов

машиностроения. Потребление их в этой отрасли становится соизмеримым (в

единицах объёма) с потреблением стали. Целесообразность использования П. м.

в машиностроении определяется прежде всего возможностью удешевления

продукции. При этом улучшаются также важнейшие технико-экономические

параметры машин - уменьшается масса, повышаются долговечность, надёжность и

др. Из П. м. изготовляют зубчатые и червячные колёса, шкивы, подшипники,

ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент

технологической оснастки и др.

Основные достоинства П. м., обусловливающие их широкое применение в

авиастроении, - лёгкость, возможность изменять технические свойства в

большом диапазоне. За период 1940-70 число авиационных деталей из П. м.

увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров

достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё

более широкому их применению характерна также для производства ракет и

космических аппаратов, в которых масса деталей из П. м. может составлять

50% от общей массы аппарата. С использованием реактопластов изготовляют

реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж

и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов,

элементы тепловой защиты, подвесные топливные баки и др. Термопласты

применяют в производстве элементов остекления, антенных обтекателей, при

декоративной отделке интерьеров самолётов и др., пено- и сотопласты - как

заполнители высоконагруженных трёхслойных конструкций.

Области применения П. м. в судостроении очень разнообразны, а

перспективы использования практически неограничены. Их применяют для

изготовления корпусов судов и корпусных конструкций (главным образом

стеклопластики), в производстве деталей судовых механизмов, приборов, для

отделки помещений, их тепло-, звуко- и гидроизоляции.

В автомобилестроении особенно большую перспективу имеет применение П.

м. для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на

долю кузова приходится около половины массы автомобиля и ~ 40% его

стоимости. Кузова из П. м. более надёжны и долговечны, чем металлические, а

их ремонт дешевле и проще. Однако П. м. не получили ещё большого

распространения в производстве крупногабаритных деталей автомобиля, главным

образом из-за недостаточной жёсткости и сравнительно невысокой

атмосферостойкости. Наиболее широко П. м. применяют для внутренней отделки

салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии,

шасси. Огромное значение, которое П. м. играют в электротехнике,

определяется тем, что они являются основой или обязательным компонентом

всех элементов изоляции электрических машин, аппаратов и кабельных изделий.

П. м. часто применяют и для защиты изоляции от механических воздействий и

агрессивных сред, для изготовления конструкционных материалов и др.

Тенденция ко всё более широкому применению П. м. (особенно плёночных

материалов) характерна для всех стран с развитым сельским хозяйством. Их

используют при строительстве культивационных сооружений, для мульчирования

почвы, дражирования семян, упаковки и хранения сельском хозяйстве продукции

и т.д. В мелиорации и сельском хозяйстве водоснабжении полимерные плёнки

служат экранами, предотвращающими потерю воды на фильтрацию из оросительных

каналов и водоёмов; из П. м. изготовляют трубы различного назначения,

используют их в строительстве водохозяйственных сооружений и др.

В медицинской промышленности применение П. м. позволяет осуществлять

серийный выпуск инструментов, специальной посуды и различных видов упаковки

для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы

конечностей, ортопедические вкладки, туторы, стоматологические протезы,

хрусталики глаза и др.

Супернаполненные пластмассы (СНП) на основе минеральных наполнителей и

термопластов относятся к новым композиционным материалам для строительства,

способным заменить дорогую пластмассу, они экологически чисты, дешевы,

сочетают лучшие свойства полимеров со специальными характеристиками.

Введение минеральных наполнителей в полимеры позволяет улучшить прочностные

показатели, огнестойкость, тепло- и электрофизические свойства, снизить

токсичность при горении и т.д. СНП могут применяться в строительстве в

качестве конструкционных, отделочных материалов, трубопроводов, обладающих

повышенной огнестойкостью, стойкостью к воздействию агрессивных и

атмосферных факторов, в том числе к солнечной радиации в условиях

длительной эксплуатации, водостойкости и кислотостойкости.

Из супернаполненных пластмасс можно получать плиты широкого

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.