рефераты бесплатно
 

МЕНЮ


Проектирование цеха ремонта поршневых компрессоров

|при эксплуатации |0,06 |0,09 |0,15 |0,20 | |

Средства измерений – универсальные.

Технология восстановления дискового поршня.

Поршни компрессров в процессе эксплуатации подвержены действию

значительных динамических нагрузок. Наибольшему износу подвергаются внешние

(в тонкой части) поверхности порня, поверхности канавок под поршневые

кольца и отверсти под поршневые пальцы. Результатом изнашивания этих

поверхностей является уменьшение диаметра поршня, увеличение ширины канавок

и диаметра отверстия под поршневой палец. На ускоренное изнашивание поршня

влияет также перекос поршня в цилиндре, вследствии большой конусообразности

шатунных шеек коленчатого вала и отверстий, образованных вкладышами

подшипников скольжения. В результате уменьшения диаметра поршня и

увеличения диаметра гильзы вследствии износа обеих деталей увеличивается

зазор между поршнем и гильзой. Это вызывает стук и повышение температуры

компрессора.

У поршней горизонтально-крейцкопфных компрессоров интенсивному

изнашиванию подвергается рабочая поверхность баббитовых поясков дискового

поршня, в результате чего нарушается соостность штока поршня, сальника и

крейцкопфа. Для восстановления соостности на рабочей поверхности поршня

протачивают две канавки типа ласточкиного хвоста, которые подвергают

лужению, а затем заливают баббитом. Технологическими базами служат прежние

поверхности. Приспособление для кокильной заливки представляет собой

стальную форму, охватывающую поршень на дуге, соответствующей размеру

канавки. Форма снабжена литниками и закрепляется с помощью охватывающей

поршень стальной лентой и стяжных болтов. Жидки баббит подается вручную из

ковша. Эту операцию осуществляют на специально переоборудованном токарно-

винторезном станке.

Баббитовую заливку поясков обрабатывают точением (предварительно),

после чего баббит уплотняют обкатыванием роликом и затем обтачивают начисто

до требуемого размера.

Средства измерения – универсальные.

Выбор и обоснование контрольно-измерительных средств.

При выборе контрольно-измерительных средств в ремонтном производстве

следует решать две задачи:

- обнаружение дефектов в деталях и узлах компрессоров;

- измерения во время технологического процесса восстановления деталей

и узлов.

Обмером с помощью измерительного инструмента завершают, как правило,

визуальный контроль деталей после разборки и мойки. Измерения позволяют

определить износ тех или иных рабочих поверхностей, отклонения элементов

детали от правильной геометрической формы как в продольном

(конусообразность, бочкообразность и т. д.), так и в поперечном

(овальность, огранка и т. д.) сечениях детали. При обмере деталей

используют стандартный мерительный инструмент универсального назначения

(штангенциркули, микрометры, микрометрические нутромеры и т. д.).

отклонение формы деталей типа тал вращения в поперечных сечениях определяют

с помощью кругломеров (например, мод. 256, 289, 290). Метод обмера чаще

всего применяют при определении дефектов цилинров, цилиндровых втулок,

поршней, поршневых колец,поршневых штоков и пальцев, коленчатых валов,

роторов, коренных и шатунных подшипников, крейцкопфов и параллелей.

При измерениях во время технологического процесса восстановления

деталей компрессора используются также стандартный мерительный инструмент

универсального назначения.

| |Пределы |Цена |Предельные |Область применения|

|Инструмент |измерения, |деления, |погрешности | |

| |мм |мм |измерения, | |

| | | |мм | |

|Щупы |4, толщина |- |0,01 |Для определения |

| |0,03-0,05 | | |зазоров между |

| |50, толщина |- | |шейкой вала и |

| |0,03-0,1 | | |подшипником. |

| |100, толщина|- | | |

| | | | | |

| |0,03-0,03 | | | |

| |200, толщина|- | | |

| | | | | |

| |0,05-1,0 | | | |

|Приспособлен|Изготавливае|- |0,01 |Для определения |

|ие для |тся для | | |относительного |

|замера |каждого вала| | |изменения |

|расхождения |по | | |расстояния между |

|щек |расстоянию | | |щеками коленчатого|

|коленчатого |между щек | | |вала. |

|вала | | | | |

|Микрометр |0 -25 |0,01 |0,01 |Для измерения |

|легкого типа| | | |толщины свинцового|

| | | | |оттиска, толщины |

| | | | |поршневых колец. |

|Микрометры |10 –50 |0,01 |0,008 |Для обмера |

|тяжелого |50 –80 | |0,009 |коренных и |

|типа |80 – 120 | |0,010 |шатунных шеек |

| |120 – 180 | |0,012 |коленчатого вала, |

| |180 – 260 | |0,015 |диаметров гильз, |

| |260 – 360 | |0,020 |поршневых колец, |

| | | | |поршней |

|Штангенцир-к|125, 150, |Величина |0,02-0,1 |Для измерения |

|ули с |300, 400, |отсчета по | |длины деталей, |

|нониусом |500 |нониусу: | |определения |

| | |0,1; 0,05; | |размеров канавок |

| | |0,02 | | |

|Индикатор |0-3 |0,01 |- |Для определени |

|часового |0-5 | | |биения коренных |

|типа |0-10 | | |шеек вала, осевого|

| | | | |и радиального |

| | | | |биения торцев |

|Линейки |Длина: |- |0,06-0,1 на |Для проверки |

|лекальные: |75 | |1м длины |деталей на просвет|

|с |125 | | | |

|односторон-н|175 | | | |

|им скосом; | | | | |

| |225 | | | |

|с двусторон-|300 | | | |

| | | | | |

|ним скосом | | | | |

|Нутромеры |50 |- |0,01 |Для контроля и |

| |100 | | |измерения |

| |200 | | |внутренних |

| |300 | | |диаметров гильз |

Проектирование цеха. [8]

Исходные данные:

Тип производства – мелкосерийный.

Режим работы – односменный.

Годовой фонд работы

оборудования – 2000 часов,

рабочих – 1860 часов.

Расчет станкоемкости.

Удельную станкоемкость изделия можно определить из следующей

зависимости:

Туд = Км*(Т – Труч), где

Т – трудоемкость 1 т изделия, н-ч/т, Т = 57,9 н-ч/т, по данным завода

“Борец “;

Км – среднее число станков, обслуживаемых одним рабочим;

Труч – трудоемкость ручных операций, Труч = (0,03-0,08)*Т = 0,05*57,9 =

2,895 н-ч/т.

Тогда

Туд = 2*(57,9 – 2,9) = 110 ст.ч/т.

Станкоемкость годового выпуска определяем по формуле:

Т = Q0*Туд, где

Q0 – годовой выпуск деталей в [т];

Туд – удельная станкоемкость обработки 1 т. деталей [ст. час/т].

Т = 850*110 = 93500 ст. час.

Определение количества основного оборудования.

Сп общ. = Т/(Ф0*К3 ср), где

Сп общ. – принятое общее число единиц оборудования цеха без указания

наименования;

К3 ср – средний коэффициент загрузки оборудования по цеху при односменной

работе. Для мелкосерийного производства К3 ср = 0,85;

Ф0 – эффективный годовой фонд времени работы оборудования, Ф0 = 2000 ч.

[8], табл. 7.1.

Сп общ.= 93500/(2000*0,85) = 55 ст.

Распределение общего количества станков по группам:

1. Токарные станки – 30%:

CТ = 55*0,3 = 17 ст.

2. Расточные станки - 5%:

Ср = 55*0,05 = 4 ст;

3. Фрезерные станки - 8%:

Спр = 55*0,08 = 5 ст;

4. Вертикально-сверлильные станки - 2%,

Св-с = 55*0,06 = 4 ст;

5. Шлифовальные станки – 30%,

Сш = 55*0,3 = 17 ст.

Всего Сп общ = 47 станков.

Расчет количества станков для участка механической обработки ремонтного

цеха.

Суммарная приведенная программа:

- гильзы 4060 шт/год;

- поршневые кольца 4060 шт/год;

- поршни 2030 шт/год;

- коленчатый вал 1015 шт/год.

Всего: 11165 шт/год.

Годовая станкоемкость Тотр= (ni=1(mj=1tш-кijNi/60, где

m – число операций обработки i-ой детали на станке;

n – число разных деталей, обрабатываемых на данном станке;

Ni – годовая программа выпуска i-х деталей.

С’р = Тс(/Ф0 ; Спр – округляется до целого в большую сторону, станков.

Кз = С’р/Спр - коэффициент загрузки, табл. 7.6.

1) Токарно-винторезные станки.

Тт-в = [26,2*4060 + 9,64*2030 + 68,3*1015 +(0,8 + 0,86 + 0,84 +

0,82)*4060]/60 = 3477,73 ст.час;

С’р= 3477,73/2000 = 1,74; Спр = 2; кз = 0,87;

2) Вертикально-расточные станки.

Тт-в = (38,1 + 17 + 43,1)*4060/60 = 6645 ст.час;

С’р = 6645/2000 = 3,27; Спр = 4; кз = 0,82;

3) Вертикально-сверлильные станки.

Тв-с = 15,4*4060/60 = 1042 ст.час;

С’р = 1042/2000 = 0,51; Ср = 1 ст; кз = 0,51;

4) Плоскошлифовальные станки.

Тв-с = (15,1 + 4)*4060/60 = 1292 ст.час;

С’р = 1292/2000 = 0,65; Ср = 1 ст; кз = 0,65;

5) Вертикально-фрезерные станки.

Тв-ф = 4,04*4060/60 = 273,4 ст.час;

С’р = 273,4/2000 = 0,14; Ср = 1 ст; кз = 0,14;

6) Круглошлифовальные станки.

Тк-ш = (14,7*4060 + 2,21*4060)/60 = 1144,2 ст.час;

С’р = 1144,2/2000 = 0,57; Ср = 1 ст; кз = 0,57;

7) Хонинговальные станки.

Тв-ф = 14,6*4060/60 = 988 ст.час;

С’р = 988/2000 = 0,5; Ср = 1 ст; кз = 0,5.

8) Горизонтально-расточные станки.

Тв-ф = 18,9*4060/60 = 1279 ст.час;

С’р = 1279/2000 = 0,64; Ср = 1 ст; кз = 0,64.

Определение числа производственных рабочих.

Расчет производим по общей трудоемкости механической обработки

приведенной годовой программы.

Рст = Т/(Фр*км), где

км – коэффициент многостаночного обслуживания в мелкосерийном производстве

км = 1,1;

Фр - эффективный годовой фонд времени рабочего, равный 1860 ч. (стр. 561).

Рст = 93500/(1860*1,1) = 46 чел.

Определение числа вспомогательных рабочих.

Рвсп = Рст*0,25 = 46*0,25 = 12 чел.;

Потребное количество ИТР.

Ритр = (Рст+Рвсп)*0,09 = (46 +12)*0,09 = 6 чел.;

Потребное число МОП.

Рмоп = (Рст+Рвсп)*0,02 = 58*0,02 = 2 чел.;

Потребное число служащих.

Рсл = (Рст+Рвсп)*0,09 = 58*0,09 = 6 чел.

Расчет площади цеха.

Общая площадь цеха составляет Sобщ = 2200 + 440 + 4018 = 6658 м2.

Производственная площадь.

Sпр = Sуд.пр.*Сп общ, где

Sуд.пр. – удельная производственная площадь,приходящаяся на один станок

Sуд.пр. = 40 м2/станок;

Sпр = 40*55 = 2200 м2

Выбираем для проектирования производственных зданий

- размер секций 72 144 м,

- с сеткой колонн 18 12 м,

- при высоте пролетов для бескрановых секций 7.2 м,

- шаг колонн t = 12 м,

- ширина проезда 4,5 – 5,5 м.

Площадь основных секций составляет 10368 м2.

Количество пролетов N = Sпр /Lуд*L,

где Lуд - 35 – 50 м, берем 50 м; L – ширина пролета 18 м,

тогда N = 2200/50*18 = 2,4.

Вспомогательная площадь.

Вспомогательная площадь составляет 15 –20 % от Sпр , тогда Sвсп = 0,2*2200

= 440 м2.

Расчет числа заточных станков.

Сз = С*П/100, где

Сз – число заточных станков;

П – процент заточных станков от общего числа станков, обслуживаемых

заточными станками общего назначения (стр. 592).

Сз = 47*5/100 = 3 ст.

Площадь заточного отделения:

Sзат = Сз*Sуд.з. , где

Суд.з. – удельная площадь, приходящаяся на 1 заточной станок (стр. 592).

Sуд = 10 м2/ст;

Sзат = 10*3 = 30 м2.

Количество рабочих заточников.

Рзат = Сзат*Фс*кз.ср./(Фр*км), где

Сзат – число станков заточного отделения;

Фс – действительный годовой фонд станка;

кз.ср. – средний коэффициент загрузки станков;

Фр – действительный годовой фонд времени рабочего;

км – коэффициент многостаночного обслуживания.

Рзат = 4*4015*0,65/(1860*1,05) = 4 чел.

Расчет числа оборудования отделения ремонта и оснастки.

С'р = 3 ст. (по нормам)

Вспомогательное оборудование.

Свсп = 3 ст. (по нормам)

Общее число оборудования отделения.

Ср = 3+3 = 6 ст.

Расчет площади отделения ремонта инструмента и оснастки.

Sи = Sуд*Ср , где

Sуд – удельная площадь, приходящаяся на один станок (стр. 592).

Sи = 22*6 = 132 м2.

Число рабочих станочников отделения.

Рр = Ср*Ф0*кз.ср./(1860*1,05) = 6*2000*0,65/(1860*1,05) = 5 чел.

Потребное число слесарей.

Рсл = Рр*0,45 = 5*0,45 = 3 чел;

Расчет площади комплексной кладовой.

Sкл = Sпл.уд.*Sобщ , где

Sпл.уд. – удельная площадь на один станок.

Sкл = 2,6*36 = 104 м2.

Расчет числа контролеров.

Принимаем 5 % от числа станочников.

Рк = Рст*0,05 = 62*0,05 = 3 чел.

Площадь контрольного отделения:

Sк = Sуд*Рк*кр.о. , здесь

Sуд – удельная площадь на одного человека;

Рк – количество контролеров;

Кр.о. – коэффициент на расположение оборудования, инвентаря и проходов.

Sк = 6*3*1,75 = 30 м2.

Определение числа электриков.

Рэл = Собщ*0,045 = 47*0,045 = 2 чел.

Расчет сборочного участка.

Необходимое число рабочих мест сборки определяют по формуле:

Мсб = Тсб*N/60*Фр.м*Р, где

Тсб - трудоемкость сборки изделия, мин;

Фр.м - эффективный годовой фонд рабочего места сборки 2050 [8] табл. 7.1,

ч.; Р – численность рабочих на одном рабочем месте – 3 чел., т. к. изделие

крупногабаритное, что позволяет осуществлеть сборку с нескольких сторон.

Тсб = Туз + Тсл-пр + Тобщ, где

Туз - трудоемкость узловой сборки, в мелкосерийном производстве составляет

10-15 % от общей трудоемкости сборочных работ [8];

Тсл-пр – трудоемкость слесарно-пригоночных работ, 20-25 % [8].

Тсб – составляет 20 % от общей трудоемкости изделия (по данным завода

“Борец”), тогда

Тсб = 310,2*0,2 = 62,04 н-ч.

Мсб = 62,04*2030/2050*3 = 21 место.

Из них:

- мест для узловой сборки – 3;

- мест для слесарно-пригоночных работ – 4;

- мест для общей сборки – 14.

Требуются также места для испытаний – 3, места для мойки и сушки – 3, места

для покраски – 1.

Общее количество сборочных мест – 28 мест.

Численность сборщиков вычисляют по формуле:

Рсб = Мсб*Фр.м*Кз*П/Фр, где

П – плотность работы, среднее число рабочих, одновременно работающих на 1

рабочем месте – 3 чел.; Кз для сборки принимают 0,8 [8] стр 564.

Тогда

Рсб = 28*2050*0,8*3/1860 = 74 чел.

В условиях мелкосерийного производства использование наладчиков на

универсальном оборудовании не рекомендуется. Здесь, как правило, рабочие

имеют высокую квалификацию и наладку универсального оборудования

осуществляют сами.

Численность ИТР – 7-12 % от числа производственных рабочих:

Ритр = 74*0,1 = 8 чел.

Площадь сборочного участка.

Sсб = Sуд*Мсб, где

Sуд – удельная площадь, приходящаяся на единицу сборочного оборудования,

м2, [6] стр. 224.

Sсб = 22*3 + 22*4 + 30*14 + 30*3 + 30*3 + 30*1 = 4018 м2 .

Количество пролетов N = Sпр /Lуд*L,

где Lуд - 35 – 50 м, берем 50 м; L – ширина пролета 18 м,

тогда N = 4018/50*18 = 4,5.

Расчет складского хозяйства.

А) Площадь склада.

Sск = m(*t/(Д*q*ки), где

m( - масса заготовок, проходящих через цех в течении года, т; t –

нормативный запас хранения грузов на складе, календарные дни; q – средняя

грузонапряженность площади склада, т/м2; Д – число календарных дней в году.

m( = Q/кисп, где

кисп – коэффициент использования металла кисп = 0,75.

Sск = 909,44*20/(260*0,8*0,35) = 250 м2;

Zтк = (Qк/Стк)*iк, где

Qк = m(*t/365 = 909,44/365 = 2,5 т;

Стк – средняя вместимость груза в тару выбранного типа; iк – число

поступлений груза к-группы на склад.

Стк – определяют по максимальной грузоподъемности gк max тары выбранного

типа с учетом среднего значения коэффициента использования тары по

грузопдъемности Ктк = 0,2…0,85.

Стк = 4,2*0,3 = 1,26

Zтк = (2,5/1,26)*7 = 14

Zст = 2*14/1 = 28 секций.

Б) Склад готовых деталей.

Sг.д .= Q0*t/(260*q*ки), где

ки – коэффициент использования площади склада.

Sг.д. = 341*20/(260*1*0,4) = 66 м2;

В) Склад запасных частей.

Потребность цеха состоит в том, чтобы склад запасных частей для

компрессорного производства имел возможность складировать 20(25 % годовой

программы выпуска [т].

Срок хранения запчастей ~2 мес.

Sзап = Q0*0,2*t/(260*q*кз);

Sзап = 341*0,2*60/(260*0,6*0,4) = 66 м2.

Отделение для приготовления СОЖ.

Sсож = 0,04*Sпр = 0,04*2200 = 88 м2.

Годовой расход охлаждающих жидкостей.

Qохл = qох*Сп*253/1000, т/год, где

qох – расход охлаждающей жидкости на один станок в сутки, кг;

Сп – количество станков; 253 – число рабочих дней в году.

Qох = 2,5*47*253/1000 = 29,7 т/год.

Годовой расход масел для смазки оборудования.

Qм = qм*Сп*253/1000 т/год, где

qм – расход масла на один станок в сутки, кг;

Сп – количество станков.

Qм = 0,44*47*253/1000 = 5,2 т/год.

Определение площадей дополнительных отделений.

Кроме указанных отделений, в цехе предусмотрены дополнительные

отделения, которые удовлетворяют потребностям цеха.

К ним относятся:

1. Термическое отделение.

Sтерм = 270 м2;

2. Помещение для зарядки электрокар.

Sэк = 80 м2;

3. Центральная ремонтная база.

Sэл-рем = 216м2;

Есть отделение для сбора, переработки и брикетирования стружки.В цеху

предусмотрены места для контейнеров под отходы.

Административные помещения.

Кабинет начальника цеха Sн = 15 м2;

Кабинет зам. начальника цеха Sз.н. = 12 м2;

Кабинет секретаря Sн = 8 м2;

Тех. бюро цеха Sт.б. = 20 м2;

Бытовые помещения цеха находятся в следующем корпусе, т. к.

предусмотрен централизованный бытовой блок.

Общественные организации цеха.

В цехе следует предусмотреть комнаты отдыха.

Sоб = Sоб.уд.*Рсл*0,6 , где

Sоб.уд. – удельная площадь зала совещаний, вместимостью до 100 человек,

приходящаяся на одного человека.

Sоб.уд .= 1,2 м2/чел;

Sоб = 1,2*114*0,6 = 82 м2.

Санузел цеха удовлетворяет потребностям Sс.у. = 50м2.

Транспортные средства цеха.

В МСЦ для перемещения грузов предусмотрены подвесные кран-балки в

количестве 8 штук, грузоподъемностью 2т, 3т и 1т.

Технология сборки типовых узлов поршневого компрессора.

Характеристика технологических процессов сборки компрессоров.

При ремонте компрессоров сначала следует осуществить разборку

компрессора, затем непосредственно ремонт его деталей и узлов. Потом снова

собрать, сначала отдельные узлы компрессора, потом весь компрессор. Поэтому

если знать технологический процесс сборки компрессора, то разборка

осуществляется просто в обратном порядке.

Технологический процесс сборки имеет ряд особенностей:

- этот процесс является завершающим и поэтому наиболее ответственный.

Надежность компрессора, его важнейшие параметры – производительность,

экономичность и др. в значительной степени определяются уровнем

технологии и качеством сборки. В процессе сборки выявляются многие

дефекты предшествующих технологических процессов, а также технологичность

конструкции изделия. Отступления от требований технологии сборки,

предусмотренных соответствующей документацией, могут быть причиной выхода

компрессоров из строя при испытаниях и эксплуатации.

- Процесс сборки компрессора отличается сложностью. Сопутствующие сборке

физические явления (деформация деталей, контактные напряжения и др.)

сложны, что затрудняет расчет точноти сборки. Рабочие движения отличаются

настолько большим могообразием, что воспроизведение их в автоматических

сборочных системах затруднено, а подчас и невозможно. Главным образом

этим объясняется низкий уровень механизации и автоматизации сборочных

работ.

- Процесс сборки характеризуется высокой трудоемкостью. В общем случае

технологические процессы сборки компрессоров, а также их отдельных узлов

можно разделить на следующие, последовательно выполняемые этапы:

предварительная сборка, промежуточная, узловая,общая сборка изделия.

В единичном и мелкосерийном производствах, при непоточной сборке,

изделие собирают на одном рабочем месте (участке) один или несколько

рабочих. Это связано со спецификой отрасли, а именно, выпуском

крупногабаритных изделий, большой номенклатурой и малой серийностью

выпуска.

Технологические процессы сборки, используемые в компрессоростроении,

характеризуются исключительно большим разнообразием технологических приемов

и операций. При сборке компрессоров используются широко известные способы

образования подвижных и неподвижных разъемных соединений – сборка резьбовых

соединений (болт-гайка; крепление деталей с помощью шпилек и гаек;

крепление деталей винтами и болтами); сборка шпоночных соединений;

стопорение резьбовых соединений с помощью контр-гаек, шплинтов и т. п.

Используются соединения деталей с гарантированным натягом, например,

при установке коренных подшипников на коленчатый вал. Применяются сварка и

пайка.

Кроме процессов и способов сборки общемашиностроительного характера,

в компрессоростроении используются специфические способы выполнения сборки

и контроля. Так, при сборке узлов коленчатого вала применяют операции

статической и динамической балансировки. По условиям сбалансированности

узлов коленчатых валов в процессе работы осуществляют подборку шатунно-

поршневых групп компрессоров по массе. Проводят испытания блок-картеров на

прочность и блок-картеров и компрессоров на плотность и герметичность путем

выдержки под давлением. Большое внимание уделяется обкатке компрессоров

после сборки.

Технические требования к сборке коленчатого вала.

Сложность условий работы коленчатого вала определяет технические

требования, предъявляемые, к его сборке:

1. обеспечение легкости и плавности вращения вала; отсутствие заеданий; это

требование является общего характера, предъявляемым к узлам вращения,

однако в данном случае его выполнение особенно важно, так как оно

гарантирует отсутствие нарушений цикличности рабочих процессов машины.

Технологически требование обеспечивается высокой точностью посадочных

поверхностей (коренных шеек) вала, на которых устанавливаются роликовые

подшипники – для установки подшипников используются поля допусков k6, m6

(ГОСТ 25347-82).

2. Биение конца коленчатого вала после сборки не должно превышать 0,05 мм;

невыполнение данного требования ухудшает условия работы подшипников,

уменьшает их долговечность.

3. Точность зубчатого зацепления регламентируется предельным отклонением

межосевого расстояния зубчатой передачи – не более ± 0,1 мм.

4. Основное требование – требование статической или динамической

сбалансированности вала. Требование сбалансированности вала обусловлено

стремлением ликвидироватьдинамические нагрузки на опры и вибрации в

процессе работы компрессора. Наличие несбалансированных вращающихся масс

при высокой частоте вращения может привести к выходу из строя не только

опор вала, но и всего компрессора.

Технологическая схема сборки коленчатого вала.

Общая сборка поршневых компрессоров.

Общая сборка поршневых компрессоров проводится на специальных

участках общей сборки, реже – в специальных цехах, куда поступают все

комплектующие детали и сборочные единицы.

Все детали и сборочные единицы, поступающие на сборку, должны быть

изготовлены в соответствии с рабочими чертежами, промыты, испытаны согласно

требованиям технических условий, приняты контролерами ОТК и иметь клеймо.

Перед сборкой все сборочные единицы и детали необходимо

расконсервировать, промыть в содовом растворе или керосине, протереть

хлопчатобумажной салфеткой или обдуть сжатым воздухом для просушки.

Трущиеся детали и поверхности смазывают маслом ХА-23 или ХА-30 (ГОСТ

5546-66). Резиновые прокладки смазывают пластинчатой смазкой ЦИАТИМ-201

(ГОСТ 6267-74). Все паронитовые прокладки перед установкой выдерживают в

сыром глицерине (ГОСТ 6823-77) не менее 2 ч.

При сборке все крепежные детали, имеющие стопорные шайбы, должны быть

надежно зафиксированы от проворачивания, кроме шатунных болтов, всасывающих

клапанов, которые стопорятся после испытания.

Ввиду того, что некоторые детали и узлы компрессора имеют

значительную массу, например, коленчатый вал в сборе поршневого компрессора

3П имеет массу около 550 кг, а блок-картер – 830 кг, при их

транспортировании на сборку и во время сборки используют подъемно-

транспортные устройства. Наиболее часто для этого используют кран-балки

грузоподъемностью от 2т.

Коленчатые валы в сборе транспортируют на участок общей сборки с

помощью специального приспособления, состоящего из двух петельных стропов

(рис.1).

Транспортирование блок-картера осуществляется с помощью цепной

подвески грузоподъемностью 1,4 т.

Гильзы подаются на общую сборку в таре (рис. 2) с помощью кран-балки

грузоподъемностью 3-5 т. В тару гильзы помещаются в двух специальных

кассетах, устанавливаемых одна на другую. Обычно в таре транспортируют до

24 гильз.

Оглавление.

Аннотация.

Введение.

Технологическая часть.

Назначение изделия и краткое описание.

Организация ремонтных работ.

Выбор и обоснование метода изготовления заготовки.

Гильзы.

Поршневые кольца.

Проектирование технологического процесса обработки гильз.

1.Основные поверхности и анализ технологичности конструкции

гильз.

2.Анализ технических требований.

3.Выбор технологических баз, маршрута обработки и типа оборудования.

4.Расчет припусков на механическую обработку гильзы.

5.Расчет режимов резания и норм времени на обработку гильзы.

Проектирование технологического процесса обработки поршневых колец.

1.Основные поверхности и анализ технологичности конструкции

поршневых колец.

2.Анализ технических требований.

3.Выбор технологических баз, маршрута обработки и типа оборудования.

4.Расчет припусков на механическую обработку поршневых колец.

5.Расчет режимов резания и норм времени на обработку поршневых колец.

Маршрут восстановления коленчатого вала.

Технология восстановления диского поршня.

Выбор и обоснование контрольно-измерительных средств.

Проектирование цеха.

Исходные данные.

Расчет производственной площади цеха.

Расчет сборочного участка.

Расчет складского хозяйства.

Определение площадей дополнительных отделений.

Транспортные средства цеха.

Технология сборки типовых узлов компрессора.

Характеристика технологических процессов сборки компрессоров.

Технологические требования к сборке коленчатого вала.

Общая сборка поршневых компрессоров.

Конструкторская часть.

Краткое описание и принцип работы приспособления для

фрезерования замка поршневых колец.

Расчет основных параметров пневматического привода

приспособления.

Краткое описание и принцип работы центросместителя.

Краткое описание и принцип работы стенда для выпрессовки

коленчатого вала.

Ораганизационно-экономическая часть.

Технико-экономическое обоснование проектируемого варианта технологического

процесса.

Определение капитальных вложений на оборудование для

изготовления и ремонта деталей компрессора.

Расчет себестоимости изготовления и ремонта деталей

компрессора.

Определение цеховых расходов.

Технико-экономические показатели цеха.

Выводы.

Охрана труда и охрана окружающей среды.

Устройства, обеспечивающие охрану труда и окружающей среды

при выполнении технологического процесса.

Расчет системы механической вентиляции.

Расчет горизонтального отстойника.

Защита производства в чрезвычайных ситуациях.

Исследовательская часть.

Исследование взаимосвязи изготовления и эксплуатации

компрессоров. На основе анализа затрат на изготовление и

ремонт выбрать метод ремонта.

Выводы.

Описание программы расчета стоимости ремонта изделия.

Алгоритм программы.

Список литературы.

Начальнику ОМС

Шорниковой Л. Н.

Служебная записка.

Прошу включить дополнительно в список студентов, свободно владеющих

немецким языком, студентку кафедры МТ – 3 Мишинёву Т. В. для участия в

стипендиальной программе «Российского Фонда Немецкой Экономики».

После защиты диплома предпологается учёба на 7-ом году обучения по

кафедре МТ – 3.

Зав. каф. МТ – 3

проф. д. т. н. Мухин А. В.

Вступительное слово.

В условиях интенсификации машиностроительного производства и

увеличения удельного веса сложных изделий, особое значение приобретает

проблема поддержания их в постоянной эксплутационной готовности, зависящей

как от условий изготовления, так технического обслуживания и ремонта.

Технология производства наряду с обеспечением высокого качества,

производительности и низких затрат в производстве изделий, должна

обеспечивать такие же показатели и в условиях эксплуатации. Опыт работы

изделий показывает, что все этапы жизненного цикла изделия, начиная от

разработки конструкций, проектирования технологических процессов,

изготовления, технического обслуживания и ремонта, взаимосвязаны. Общая

структура взаимосвязи представлена на листе исследований. Входным сигналом

системы является поток заказов, который после принятия решений управления,

организации поступает на вход подсистемы конструкторской подготовки, в

которой осуществляется анализ технологичности изделий с точки зрения

ремонтопригодности. Далее информация поступает в подсистему технологической

подготовки. Здесь решаются вопросы анализа имеющихся дефектов, их

устранение, расчет затрат на изготовление и ремонт, их сопоставление и

выбор вариантов. Выходом подсистемы является конкретное изделие,

поступающее в эксплуатацию.

В связи с тем, что разработка каждого этапа требует больших трудовых

затрат, материалов, оборудования, организационных мероприятий, возникает

необходимость в их расчетах и их сопоставлениях.

Особенно актуальным является выявление взаимосвязи изготовления и

ремонта, а также целесообразности этих работ. В общем виде эта взаимосвязь

представлена на листе исследований, здесь видно, что кривая стоимости

ремонта и кривая стоимости изготовления нового изделия с течением времени

пересекаются в точке А, что указывает на равенство стоимости работ. Выбор

изготовления или ремонта будет зависеть от затрат на эти работы и цены

нового изделия. Далее, если затраты на ремонт больше (точка А(), следует

изготавливать изделие. Если затраты на ремонт меньше (точка А((), изделие

следует ремонтировать. Если изделие снято с производства, но продолжает

эксплуатироваться, его необходимо ремонтировать независимо от затрат.

Различные технологические процессы восстановления деталей, узлов

компрессоров, а также организация ремонтных работ обуславливают их

стоимость, что вызывает необходимость их сопостановления и выбора наиболее

оптимального и дешевого способа ремонта. Кроме того, стоимость ремонтных

работ может оказаться намного выше стоимости изготовления нового

компрессора и целесообразность ремонта вообще может оказаться сомнительной.

Выбор оптимального варианта ремонта зависит также от того, находятся данные

компрессоры в производстве или сняты с производства, но еще

эксплуатируются.

Задачей экономического анализа является сопоставление различных

вариантов ремонта и выбор наиболее эффективного. Для компрессоров, не

снятых с производства, расчет показателей проводят с целью выбора такого

способа ремонта, стоимость которого не превышала бы стоимости изготовления

нового компрессора. При ремонте компрессоров, снятых с производства, но

находящихся в эксплуатации, особенно актуальна задача проведения ремонта в

кратчайшие сроки с минимальными затратами труда и материалов.

Решение о целесообразности проектируемой технологии ремонта

принимается на основе анализа годового экономического эффекта,

определяемого сопоставлением суммарных затрат по различным видам ремонта и

изготовления изделия. Чтобы сократить время на расчет экономического

эффекта и выбор оптимального варианта ремонта была разработана программа,

которая позволяет расчитать затраты на тот или иной вариант ремонта деталей

и сравнить его с затратами на изготовление новой детали.

Технологическая часть дипломного проекта представляет собой

разработку технологического процесса восстановления деталей компрессора –

это коленчатый вал и поршни и техпроцесса изготовления деталей, которые не

подлежат ремонту – это гильзы и поршневые кольца.

Основной причиной дефектов, возникающих в процессе эксплуатации,

является потеря работоспособности составных частей компрессора при

превышении предельного износа. При длительной работе любой машины даже при

нормальных условиях эксплуатации и соблюдении правил технического

обслуживания ее составные части изнашиваются. Изнашивание сопряженных

деталей является причиной 85( отказов компрессорного оборудования.

Поэтому в качестве деталей для которых рассматриваются вопросы

изготовления и восстановления взяты гильза, поршень, поршневые кольца и

коленчатый вал.

Конструкторская часть проекта представлена разработкой приспособления

для фрезерования замка поршневого кольца, центросместителя для обработки

шатунных шеек колен вала и гидравлическим стендом для выпрессовки

коленчатого вала.

Целесообразность выбранного варианта технологического процесса

подтверждается экономической частью дипломного проекта.

Также в дипломном проекте рассмотрены вопросы охраны труда и охраны

окружающей среды. А также защита производства в чрезвычайных ситуациях.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.