рефераты бесплатно
 

МЕНЮ


ГРЭС 1500 Мвт

Где n – число котлов;

Qка max - максимальный расход тепла на парогенератор;

Qраб. усл – низшая теплота сгорания натурального топлива (экибастузский

каменный уголь марки СС) 4000 ккал или 16760 кДж;

(ка – КПД котлоагрегата;

Вн.max= n(4562850000 (4,19/10і= 893,т/ч

0,92(4000

6.Выбор типа , единичной мощности и количество устанавливаемых котлов.

Краткая характеристика котла.

6.1 По данным задания, и характеристике устанавливаемой турбины, выбор

котла произведем по рекомендации (л2; стр5). Выбираем прямоточный

однокорпусный котел СКД типа П-57, котороый предназначен для сжигания

углей Экибастузского месторождения. На проектируемой ГРЭС установим три

котла данного типа, по одному на каждый энергоблок.

6.2 Расчет тепловой нагрузки парогенератора.

Qка=D0(h0-hп.в.)+Dпп(hпп``-hпп`).

где D0 - производительность парогенератора в кг/ч.

Dпп – расход вторичного пара.

Qка= 1650000(3365-1156)+ 1350000 (3580-2900)= 4562850000 кВт.

6.2 Расход топлива подаваемого в топку.

Вр= Qка = 296726, кг/ч, или 296,7 т/ч

Qр((ка(4,19

где Qр – низшая теплота сгорания топлива 4000 ккал

(Экибастузский каменный уголь марки СС)

(ка – КПД парогенератора.

Суточное потребление одного котла:

Всут= 296,7(24= 7121,5 т.

Суточное потребление топлива электростанцией на три энергоблока:

Вст. сут= 7121,5(3= 21364,3 т.

Месячное потребление:

Вмес.= 21364,3(30= 640929 т.

6.3 Котел П-57 энергоблока 500 МВт

Однокорпусный прямоточный паровой котел (моноблок) для сжигания

экибастузских каменных углей, отличающимися многозольностью, абразивностью

и тугоплавкостью золы, получил маркировку П-57

(Пп-1650-255). В связи с особыми свойствами золы компоновка агрегата

выполнена ЗиО по Т -образной схеме с твердым шлакоудалением .

Паропроизводительность котла 460 кг/с (1650 т/ч) давление пара 24,5 МПа,

температура 545(С, расход вторичного пара 375 кг/с, температура

промперегрева -545(С, температура" питательной воды 270(С, КПД- 91,75 %.

Рабочая среда в котле движется двумя подъемными потоками. Зона максимальной

теплоемкости вынесена в конвективный газоход. Средняя массовая скорость в

НРЧ -2000 кг/(міс). Экраны из плавниковых труб, агрегат цельносварной с

уравновешенной тягой. Панели СРЧ, экранирующие боковые стены; на уровне

выходного окна из топки образуют фестон. Змеевики конвективных поверхностей

перпендикулярны фронту, длиной в половину глубины конвективной шахты,

поэтому все камеры трубных пакетов расположены на фронте и задней стене;

пакеты опираются через стойки на пять балок. Все поверхности нагрева

размещены симметрично относительно вертикальной оси котла, что облегчает

регулирование параметров по потокам воздействием подачи вода - топливо: На

растопочных режимах включают - рециркуляционные насосы ограниченной

производительности.

Промперегреватель размещен по ходу газов после конвективного перегревателя

высокого давления (КПВД) в зоне умеренных температур газов Тракт

промперегревателя выполнен в четыре потока, которые направляются

последовательно в паро-паровой теплообменник 1, конвективные поверхности

первой 5 и второй 4 ступеней. Регулирование промперегрева осуществляется

изменением пропуска вторичного пара через ППТО.

На котле установлено восемь углеразмольных мельниц, одна из них резервная,

система пылеприготовления с прямым вдуванием. 24 горелки установлены в два

яруса на боковых стенах топки. Очистка стен топки осуществляется

аппаратами ОПР-5, а устройства по очистке конвективных поверхностей

отсутствуют в расчете на самоочистку за счет наличия в зоне экибастузских

каменных углей песка.

В конструкции котла воплощены прогрессивные идеи, в том числе:

крупноблочное изготовление поверхностей нагрева (коэффициент блочности 78

%, число блоков - 3150 шт.), возможность выполнения. Механизированного

ремонта, автоматизация процессов регулирования в широком диапазоне

нагрузок др. Головные агрегаты показали высокую надежность и

экономичность в работе, что позволило котлу П-57 присвоить Знак качества. В

связи с повышением поставочной зольности экибастузского угля ЗиО провел

дальнейшую модернизацию агрегата с изменением наименования П-57-3. (л3;

стр…..)

[pic]

6.4 Выбор системы пылеприготовления для котла П-57

Выбираем индивидуальную систему пылеприготовления с прямым вдуванием – с

непосредственной подачей пыли в топку без промежуточного бункера пыли.

Для экибастузского каменного угля, характерезующегося большим выходом

летучих (30%), целесообразно применение молотковых мельниц.

Выбираем восемь молотковых мельниц типа ММТ –2000/2590/750,

производительностью 44 т/ч, одна их которых резервная.

[pic]

рис. 6.2 индивидуальная система пылеприготовления с прямым вдуванием с

молотковыми мельницами с газовой сушкой.

1 – короб горячего воздуха, 2 – мельница, 3 – присадка холдного воздуха, 4

– питатель сырого топлива, 5 – бункер сырого топлива;

6 – шибера; 7 – клапан мигалка; 8 – горелка; 9 – котел; 10 – дутьевой

вентилятор; 11 – воздухоподогреватель; 14 короб вторичного воздуха; 15 –

взрывные клапана; 16 – газоход; 17 – смеситель; 18 – устройство нисходящей

сушки.

7. Выбор схемы топливного хозяйства ГРЭС на основном топливе.

Основным топливом проектируемой ГРЭС является экибастузский

каменный уголь, марки СС.

СХЕМА ТОПЛИВНОГО ХОЗЯЙСТВА ЭЛЕКТРОСТАНЦИИ

Топливно-транспортное хозяйство современных тепловых электростанций

представляет собой комплекс сооружений, машин и механизмов,

предназначенных для:

1) приема поступающих и отправки разгруженных железнодорожных маршрутов;

2) размораживания топлива в полувагонах перед разгрузкой, если

поступает смерзшееся топливо;

3) разгрузки поступивших железнодорожных маршрутов;

4) внутристанционного транспорта топлива к бункерам парогенераторов

или на склад;

5) хранения и выдачи топлива со склада;

6) дробления топлива до установленного нормами размера кусков;

7) распределения топлива по бункерам парогенераторов.

Кроме того, в тракте топливоподачи устанавливают механизмы для улавливания

и удаления металлических и древесных предметов из потока топлива с целью

предохранения технологического оборудования от поломок, пробоотборные и

проборазделочные установки, а также контрольно-измерительные приборы,

измеряющие количество поступающего топлива.

Подъездные пути.

Уголь на ГРЭС поставляется железнодорожным транспортом.

Подъездные пути эксплуатируются по договору с предприятием Министерства

путей сообщения, (ЕТП) заключаемому на основании «Единого технологического

процесса работы подъездных путей и станций примыкания».Норма простоя

вагонов с углем под разгрузкой определяется в результате расчетов в ЕТП

затрат времени на следующие операции: подачу маршрута с углем со станции

примыкания на ГРЭС; взвешивание угля, разбивку маршрута на ставки и

маневровые работы на ГРЭС; разгрузку вагонов с углем ; сбор порожняка иего

возврат на станцию примыкания.

Топливо доставляется в четырехосных полувагонах грузоподъемностью 63

тонны.

7. 1 Размораживающие устройства.

Восстановление сыпучести смерзшегося в полувагонах топлива осуществляют

разогревом его в размораживающих устройствах. Для проектируемой ГРЭС

наиболее эффективным является пленочное оттаивание топлива от стенок

полувагонов в размораживающем устройстве, с последующей разгрузкой их

вагоноопрокидывателем.

[pic]

рис 7.2

На рисунке показано размораживающее устройство комбинированного типа.

Стенки полувагонов нагреваются от трубчатых излучателей обогреваемых паром

и имеющих температуру поверхности 150 - 200(С. Кроме трубчатых излучателей

в размораживающем устройстве установлены вентиляторы для циркуляции

горячего воздуха.

Расчет вместимости размораживающего устройства.

Вместимость определяется по формуле : n= B((р+(м)

где (р=1,5 ч и (м=0,5ч; В – Часовой q

расход топлива эл.станцией т/ч; q – усредненная грузоподъемность полувагона

т. Размораживающее устройство – двухпутное, комбинированное.

n= 877((1,5+0,5) =28 вагонов.

63

Разгрузочные устройства с вагоноопокидывателям.

Этот тип разгрузочного устройства применяют при поступлении на

электростанции низкокачественного топлива с повышенной влажностью, низкой

сыпучестью, склонного к смерзанию при низкой температуре.

Применять вагоноопрокидыватели экономически целесообразно на тепловых

электростанциях с расходом топлива свыше 150 т/ч. Разгрузочные устройства

с вагопоопрокидывателями позволяют снизить количество эксплуатационного

персонала, занятого на разгрузке, уменьшить длительность простоя

железнодорожных полувагонов на территории ТЭС, разгружать большое

количество топлива в минимально короткие сроки.

На электростанциях с расходом топлива, от 400 до 1250 т/ч, как правило,

устанавливают два вагоноопрокидывателя.

На проектируемой ГРЭС установим два роторных вагоноопрокидывателя,

которые разгружают полувагоны поворотом их вокруг продольной оси на 175(.

(рис )

Роторные вагоноопрокидыватели требуют значительного заглубления

подбункерного помещения.

[pic]

рис 7.3

МЕХАНИЗМЫ ВНУТРИСТАНЦИОННОГО

ТРАНСПОРТА

Транспорт твердого топлива от разгрузочных устройств до бункеров сырого

топлива в главном корпусе, на склад и со склада осуществляется ленточными

конвейерами. Ленточные конвейеры могут быть следующих типов: стационарные и

передвижные с движением ленты в одном направлении и с движением ленты

попеременно в одном из двух направлений (реверсивные).

Ленточные конвейеры имеют высокую производительность, являются надежным и

экономичным механизмом непрерывного действия, ремонт и обслуживание

которого сравнительно просты. Конвейеры применяют горизонтальные,

наклонные, горизонтально-наклонные. Угол наклона конвейеров с гладкой

лентой принимается не более 18( для всех видов твердого топлива. В местах

загрузки конвейера крупнокусковым топливом угол наклона конвейера

ограничивается 12 – 15( для предотвращения скатывания крупных кусков.

Через пересыпные короба топливо загружается на верхнюю рабочую ветвь ленты

и транспортируется к месту разгрузки, которая происходит через концевые

барабаны или осуществляется специальными разгрузочными устройствами в

необходимых местах.

Основным элементом ленточного конвейера является бесконечная лента,

огибающая два или несколько барабанов и поддерживаемая роликами. Скорость

движения ленты конвейера принимается от 2,0 до 2,5 м/с.

[pic]

рис 7.4

Для обеспечения надежности на электростанциях всегда устанавливают два

параллельных конвейера. Конвейеры устанавливаются в закрытых отапливаемых

помещениях, включая галереи и эстакады. Высота галерей (эстакад) в свету не

ниже 2,2 м, ширина исходя из обеспечения прохода между конвейерами не менее

1000 мм и боковых проходов 700 мм. Через каждые 75 - 100 м

предусматриваются переходные мостики через конвейеры.

Дробильные устройства.

До поступления в мельницы парогенераторов топливо измельчается в молотковых

дробилках до размеров кусков не более 15 мм, а при высокой влажности до 25

мм. Для станции с потреблением топлива в 877 т/ч, выберем две молотковых

дробилки . М20(30, производительностью 1000 – 1250 т/ч.

по одной на каждую нитку

Топливные склады.

Топливные склады выполняются открытыми. Склад, организуемый для планового

и долговременного хранения топлива в целях обеспечения электростанции

топливом при длительных задержках в его доставке, называется резервным

складом или резервной частью склада. Склад, организуемый для

систематического выравнивания расхождения в количестве прибывающего на

электростанцию топлива и подаваемого в данный момент в бункера котельной,

называется расходным.

Резервные и расходные склады угля располагаются на территории

электростанции поблизости от главного корпуса и могут совмещаться на одной

площадке. В этом случае из-за нечеткой границы между ними значительная

часть резервного склада переходит в разряд расходного. На таких

совмещенных складах хранить топливо необходимо в соответствии с нормами,

установленными для резервных складов.

Вместимость складов угля и сланцев принимается, как правило, равной 30-

суточному расходу топлива. Если электростанция проектируется с учетом

расширения, то должна предусматриваться и возможность расширения склада.

Для определения емкости топливного склада рассчитаем месячный расход

топлива при максимальной нагрузке.

Часовой расход топлива на проектируемой ГРЭС - 877 т, суточный – 21048 т,

месячный - 631440 т.

Для проектируемой ГРЭС выбираем кольцевой склад с поворотным

штабелеукладчиком и роторным перегружателем.

На рисунке показана компоновка такого склада емкостью 650000 т.

угля.

Из разгрузочного устройства ленточными конвейерами уголь подается к

штабелеукладчику. Поворотным штабелеукладчиком, на стреле которого

установлены два конвейера: стационарный и передвижной реверсивный –

топливо подается на склад. Склад в этом случае имеет форму кольца

трапецеидального профиля. Со склада топливо выдается поворотным роторным

перегружателем, мост которого вращается относительно той же вертикальной

оси центральной колонны, что и штабелеукладчик.

Центральная вертикальная колонна и бетонное кольцо., ограничивающее

внутренний диаметр штабеля, являются опорами, по которым происходит

передвижение штабелеукладчика и роторного перегружателя.

Описанная механизация угольного склада позволяет полностью или частично

автоматизировать складские операции с производительностью до 1800 – 2000

т/ч.

8. Выбор оборудования схемы ГРЭС

8.1 РЕГЕНЕРАТИВНЫЕ ПОДОГРЕВАТЕЛИ

Регенеративная установка, предназначенная для подогрева поступающей в котел

питательной воды паром из нерегулируемых отборов турбины, состоит из части

низкого давления (от конденсатора до деаэратора) и части высокого

давления (от деаэратора до котла). Основными элементами регенеративной

установки в части низкого давления являются пять поверхностных

подогревателей ПНД-1, ПНД-2, ПНД-З, ПНД-4, ПНД-5, находящихся по водяной

стороне од напором конденсатных насосов. В части высокого давления для

регенеративного подогрева питательной воды предназначены три поверхностных

подогревателя ПВД-7, ПВД-8 и ПВД-9, находящихся по водяной стороне под

напором питательных насосов.

Вся регенеративная установка выполнена однониточной.

Характеристики регенеративных подогревателей, применяемых в

турбоустановке, приведены табл. 8.1 (л2; стр 114)

таблица 8.1

| |ном|тип |повер|параметры |давле |рас |гидравличес|

| |ер |подогревателя|хност|паорвого |ние |ход |кое |

| |отб| |ь |пространств|воды |воды|сопротивлен|

| |о | |нарев|а (в |кгс/см| |ие |

| |ра | |а |корпусе) |І |т/ч | |

| | | |мІ | | | |кПа |

| | | | |давл|темпе| | | |

| | | | |е |ратур| | | |

| | | | |ние |а | | | |

| | | | |МПа |(С | | | |

|пнд1|VII|ПН-800-29-7-I|722 |0,49|53,6 |2,84 |1067|59,78 |

| |I |II НЖ |1000 | |94,2 |2,84 | |67,62 |

|пнд2|VII|ПН-800-29-7-I|705 |0,49|109,9|2,84 |1067|79,38 |

| | |I НЖ |1015 | | |2,84 | |89,2 |

|пнд3|VI |ПН-800-29-7-I|900 |0,49|225 |2,84 |1179|79,38 |

| |V |НЖ | | |285 | | | |

|пнд4|IV |ПН-900-29-7-I| |0,49| | |1179| |

| | |I НЖ | | | | | | |

|пнд5| |ПН-900-29-7-I| |0,49| | |1271| |

| | |НЖ | | | | | | |

|пвд7|III|ПВ-200-380-17|2150 |1,67|423 |37,24 |1705|404,7 |

| | | |2150 | |304 |37,24 | |453,7 |

|пвд8|II |ПВ-200-380-44|2150 |4,31|345 |37,24 |1625|327,32 |

| |I | | | | | | | |

|пвд9| |ПВ-200-380-61| |5,98| | |1504| |

В состав питательно-деаэраторной установки входят деаэраторы, пусковые

подогреватели низкого давления, предвключенные (бустерные) и главные

питательные насосы, приводные турбины питательных насосов с вспомогательным

оборудованием.

8.2 Деаэратор.

Выбираем деаэратор производства БКЗ с деаэрационной колонкой ДП-1600

производительностью по питательной воде 1600 т/ч, который осуществляют

нагрев конденсата до 164,2 (С и удаление из него неконденсирующихся

газов. Номинальное давление в деаэраторах 0,69 МПа (7,0 кгс/смІ).

Деаэратор установлен на отметке 28 м, что обеспечивает необходимый

подпор давления на всосе бустерных насосов с запасом от вскипания 13 (С.

Питание деаэратора паром осуществляется из следующих источников:

из IV отбора при эксплуатации блока с нагрузкой выше 0,7-0,75 максимальной;

из III отбора в диапазоне нагрузок 0,5-0,7 минимальной;

из коллектора собственных нужд при нагрузке ниже 0,5 максимальной ( в том

числе в период пуска и после сброса нагрузки.)

8.3 Приводная турбина энергоблока.

Приводная турбина питательных насосов энергоблока 500 МВт с одновальным

турбоагрегатом соединяется со стороны выхлопной части с зубчатой муфтой с

валом питательного насоса, а со стороны переднего подшипника через

одноступенчатый редуктор бустерным насосом.

Турбина питается паром из IV отбора главной турбины,. Энергоблок имеет по

два турбонасоса с производительностью каждого, равной 50% полной при

совместной работе Каждый из турбонасосов обеспечивает 60% полной нагрузки

энергоблока по питательной воде.(л1;стр 166)

Основные характеристики турбопитательного агрегата приведены в таблице 8.2

(л2;стр 12)

таблица 8.2

|наименование |показатель |

|приводная турбина ОК-18ПУ | |

|тип |конденсационная , без отборов |

| |пара |

|количество в блоке |2 |

|мощность номинальная |10,3 МВт |

|расход пара номинальный |49 т/ч |

|давление пара перед стопорным |0,94 МПа |

|клапаном номинальное | |

|температура пара |378(С |

|давление в конденсаторе |4,5 кПа |

|номинальное | |

|частота вращения |4600 об/мин |

|КПД от стопорного клапана |78,1% |

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.