рефераты бесплатно
 

МЕНЮ


Добыча золота методами геотехнологии

Добыча золота методами геотехнологии

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

КРАСНОЯРСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ

ЦВЕТНЫХ МЕТАЛЛОВ И ЗОЛОТА

РЕФЕРАТ НА ТЕМУ:

«ДОБЫЧА ЗОЛОТА МЕТОДАМИ

ГЕОТЕХНОЛОГИИ»

Выполнил: Д.А.

Группа:

Преподаватель: Е.Л.

Красноярск - 2001

ОГЛАВЛЕНИЕ

1. ОБЩАЯ ХАРАКТЕРИСТИКА ГЕОТЕХНОЛОГИЧЕСКИХ МЕТОДОВ 3

Объекты применения геотехнологии 3

Преимущества геотехнологии 3

Экономические показатели 4

2. ОБЗОР ТЕХНОЛОГИЧЕСКИХ СПОСОБОВ, ИСПОЛЬЗУЕМЫХ ПРИ КУЧНОМ

ВЫЩЕЛАЧИВАНИИ ЗОЛОТА ИЗ РУД 7

Цианидное выщелачивание 7

Тиомочевинное (тиокарбамидное) выщелачивание 8

Тиосульфатное и аммиачно-тиосульфатное выщелачивание 10

Окислительное выщелачивание минеральными кислотами и солями 10

Бактериальное выщелачивание 12

Вторичные ионообменные явления в процессах выщелачивания золота 15

Методы извлечения золота из растворов и сточных вод 16

Сорбция благородных металлов активными углями 16

Извлечение благородных металлов ионообменными смолами и экстрагентами 17

Использование ферритизированных сорбентов 19

Электролитическое извлечение золота из растворов 19

ЗАКЛЮЧЕНИЕ 21

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 22

ОБЩАЯ ХАРАКТЕРИСТИКА

ГЕОТЕХНОЛОГИЧЕСКИХ МЕТОДОВ

Объекты применения геотехнологии

Геотехнология определяется как метод добычи цветных, редких и

благородных металлов путем их избирательного растворения химическими

реагентами на месте залегания и последующего извлечения образованных в зоне

реакций химических соединений без формирования значительных пустот и

массового сдвижения вмещающих пород. К геотехнологии относят также кучное и

отвальное выщелачивание металлов, хотя эти методы являются промежуточными

между собственно геотехнологическим выщелачиванием – подземным и

гидрометаллургическим – чановым.

Геотехнологические методы добычи полезных ископаемых следует

рассматривать не как конкурирующие с традиционными, а как дополняющие их.

Эти методы целесообразно применять на нерентабельных для подземного и

открытого способов объектах: на крупных месторождениях сравнительно бедных

руд, где значительный экономический эффект может быть получен за счет

масштабности производства; на мелких залежах и рудопроявлениях богатых руд

на месторождениях, отработанных традиционными методами, для извлечения

полезных компонентов из оставшихся целиков и забалансовых руд; на отвалах

забалансовых руд и хвостов обогащения закрытых и действующих горных

предприятий.

Преимущества геотехнологии

Наиболее экономичным является подземное скважинное выщелачивание на

новых месторождениях, когда проницаемость руды для раствора достаточна и

предварительное дробление не требуется. В этом случае отпадает

необходимость транспортировки руды от рудника, не нужны хвостохранилища,

появляется возможность полной автоматизации процесса, исключается опасный

труд человека под землей, резко (примерно в три раза) сокращаются объемы,

сроки ввода и освоения промышленных мощностей, не происходит вредных

выбросов газов и пыли.

Основной проблемой подземного выщелачивания является обеспечение

защиты от проникновения промышленных растворов в подземную гидросеть. В

связи с этим требуется тщательное геологическое изучение объекта, особенно

в плане тектонических нарушений. При наличии разломов или зон

трещиноватости необходимо проведение работ с целью создания искусственных

водонепроницаемых экранов путем закачки бетонной смеси в плоские щели,

сформированные методом гидроразрыва, который разработан в институте Горного

дела СО РАН.

Кучное выщелачивание на специально подготовленных основаниях

максимально снижает возможность утечки промышленных растворов. Однако

себестоимость готовой продукции становится несколько выше, чем при

подземном выщелачивании, но существенно ниже, чем при традиционных методах

добычи.

Кучное и, в меньшей степени, подземное выщелачивание давно и широко

используются в разных странах (США, Испании, Чили, Чехословакии, Канаде,

Мексике, Перу, Замбии, Австралии, ЮАР и др.) для добычи урана, меди, золота

и серебра. Известны запатентованные разработки по выщелачиванию свинца,

цинка, молибдена, вольфрама, олова, мышьяка, висмута и других металлов. В

нашей стране в промышленном масштабе этими методами добывался только уран,

а медь, золото и серебро извлекались лишь на опытно-промышленных установках

малой производительности. В последние годы, в связи с некоторым подъемом в

экономике, интерес промышленников к геотехнологии усилился. Начато

внедрение кучного выщелачивания на горнодобывающих предприятиях Рудного

Алтая. Планируется использование геотехнологии для добычи золота и меди в

Забайкалье. Можно надеяться, что геотехнологические методы найдут

применение в России при добыче цветных и благородных металлов.

Экономические показатели

По оценке американских специалистов капитальные затраты на организацию

кучного выщелачивания золотосодержащей руды производительностью 180 т/сут

(без учета расходов на горные работы) составляют $ 200 тыс., при этом

затраты на цианид натрия не превышают $ 0.15, а потребление электроэнергии

– 0.0003 кВт * ч на 1 т руды.

Если расходы на извлечение золота по стандартной технологии (чановое

выщелачивание с предварительным перемешиванием, осаждение золота цинковой

пылью) принять за единицу, то для геотехнологического варианта (кучное

выщелачивание с предварительным дроблением руды, осаждение золота на угле,

электролиз) они составят 0.32. Соответствующее соотношение эксплуатационных

затрат составляет 1:0.66.

Традиционная технология экономически выгодна, когда содержание золота

в руде не менее 1.74 г/т (эта цифра зависит от цены золота на мировом

рынке), а кучное выщелачивание – при содержании золота до 0.96 г/т.

На руднике Эберли (США) капитальные вложения на кучное выщелачивание

составили $ 600 тыс., а эксплуатационные расходы – 11.5 $/т. Затраты

распределяются так:

| |$/т |% |

|Добыча руды (рабочая сила, взрывные |2,44 |21,2 |

|работы техн. обслуживание, | | |

|страхование и прочее) | | |

|Кучное выщелачивание: | | |

|оплата труда: | | |

|– рабочих |1,05 |9,14 |

|– инженерно-технических работников | | |

|электроэнергия и топливо |0,78 |6,78 |

|реагенты |0,77 |6,7 |

|вода |0,83 |7,22 |

|техническое обслуживание |0,11 |0,96 |

|плата землевладельцу за разработку |0,48 |4,17 |

|недр | | |

|дробление руды и укладка в кучи |1,05 |9,15 |

|процесс сорбции золота на угле |0,44 |3,83 |

|десорбция золота и электролиз элюата|0,26 |2,26 |

| | | |

|химические анализы |0,26 |2,26 |

|отчисления на оборудование |0,13 |1,13 |

| |2,90 |25,2 |

|Всего |11,5 |100,0 |

Таким образом, кучное выщелачивание золота экономичнее традиционных

методов добычи по всем показателям.

Технико-экономическая эффективность кучного и сорбционного

выщелачивания золота из рудного сырья в зависимости от содержания золота,

производительности установки, материала основания под рудный штабель,

крупности дробления руды и т.д. приведена в [3] применительно к

экономическим условиям России.

Ниже даны два варианта расположения установки для выщелачивания:

– в непосредственной близости от источника сырья (транспортировка руды

осуществляется не более чем на 1 км, требуется сооружение хвостохранилища

для слива жидких отходов);

– в районе хвостохранилища золотоизвлекательной фабрики (транспортировка

руды производится на расстояние до 10 км).

Эффективность кучного выщелачивания рассматривалась для песчано-

глинистых и кварц-карбонатных руд с содержанием золота 1.5; 2.0; 2.5 г/т

при производительности установки 50, 100 и 200 тыс. т/год.

Известно, что для песчано-глинистых руд, требующих более длительного

выщелачивания, целесообразно использовать одноразовые основания – глиняные

с пленочным экраном. Для кварцевых руд, цикл обработки которых короче,

можно применять бетонные основания. Метод кучного выщелачивания золота

оказывается экономически приемлемым даже в случае дробления руды до

крупности -5 мм, если содержание золота в руде не ниже 1 г/т и

производительность установки не менее 100 тыс. т/год. Кучное выщелачивание

следует проводить в непосредственной близости от источника сырья, так как

расходы на транспорт превышают затраты на сооружение хвостохранилища. Этими

же авторами [3] рассмотрена эффективность кучного выщелачивания золота

малотоксичными и нетоксичными, в сравнении с цианидами, растворителями.

Показано, что при бактериальном выщелачивании значительный экономический

эффект достигается за счет резкого сокращения издержек на обезвреживание

жидких отходов.

ОБЗОР ТЕХНОЛОГИЧЕСКИХ СПОСОБОВ,

ИСПОЛЬЗУЕМЫХ ПРИ КУЧНОМ

ВЫЩЕЛАЧИВАНИИ ЗОЛОТА ИЗ РУД

Золотосодержащие руды, пригодные для переработки методом кучного

выщелачивания, разделяют на следующие типы:

1) известковый алеврит с субмикронными частицами золота и примесями пирита,

галенита, киновари, стибнита;

2) окремненные алевролиты с микронными частицами золота, часто связанными с

остаточными окислами железа;

3) песчаная и доломитовая руда, содержащая золото в межзерновом

пространстве;

4) жильная кварцевая руда;

5) изверженные горные породы с небольшими кварцевыми жилами со свободным

золотом.

Цианидное выщелачивание

Цианидное выщелачивание на сегодняшний день является основным способом

извлечения золота из руд, как в традиционной технологии, так и при

геотехнологической добыче. В качестве реагента используются соли циановой

кислоты – цианиды натрия или калия концентрацией 0.02–0.3%. Растворение

золота происходит по реакции 2Au + 4KCN + 0/2O2 + Н2O = 2KAu(CN)2 + 2КОН,

из которой следует необходимость введения в процесс окислителя – добавок в

рабочий раствор перекиси водорода, гипохлоритов калия, натрия и др. В

цианистых растворах должно быть обеспечено, кроме того, создание, так

называемой, защитной щелочи, уменьшающей разложение цианистых солей. В

подземном или кучном выщелачивании для предотвращения кольматационных

явлений предпочтительнее использование едких щелочей (КОН или NaOH), не

приводящих к увеличению в растворе содержания кальция.

Процесс цианирования золотосодержащих руд и концентратов используется

и в традиционной технологии и, соответственно, разносторонне изучен. В

частности установлено, что скорость растворения золота может

контролироваться либо концентрацией NaCN, либо кислорода; интенсивное

пассивирование золота имеет место в присутствии солей свинца; при малых

концентрациях (5–25 мг/л) серебро, свинец и ртуть ускоряют растворение

золота; в присутствии сульфосолей мышьяка скорость растворения золота резко

подавляется.

Интенсификация цианирования может быть достигнута за счет

предварительного введения извести и цемента для гранулирования материала;

использования концентрированных цианистых растворов, цианида кальция,

который дешевле NaCN, комбинированных реагентов (особенно для теллуристых и

золотосеребряных руд); введения в раствор некоторых добавок (солей таллия,

марганца, высокомолекулярных спиртов и т. д.).

Продолжительность выщелачивания колеблется от 7 до 30 суток для

дробленой руды (крупностью менее 20 мм) и до нескольких месяцев для

получаемой в результате взрыва.

При всех достоинствах цианистого процесса извлечения золота из руд у

него имеется и существенный недостаток – очень высокая токсичность

цианистых солей. До сих пор не решена проблема обезвреживания стоков,

поэтому уже давно ведется поиск альтернативных реагентов для

гидрометаллургической (в том числе и геотехнологической) переработки

золотосодержащего сырья.

Тиомочевинное (тиокарбамидное) выщелачивание

Возможным заменителем цианистых растворителей золота являются кислые

растворы тиомочевины. Впервые предложения об использовании тиокарбамидного

выщелачивания для извлечения золота из сурьмянистых руд были высказаны в

начале сороковых годов XX века. Исследования как у нас в стране, так и за

рубежом показали следующие преимущества тиомочевинного растворения, по

сравнению с цианированием: скорость процесса выше примерно в 10 раз, он

менее подвержен воздействию со стороны ионов-примесей, меньше удельный

расход и коррозионная активность реагента. Вместе с тем указывались и

отрицательные моменты: тиомочевина дороже NaCN на 25%, в окислительных

условиях она разлагается, имеются сложности при извлечении золота из

тиомочевинных растворов активированным углем.

Тиомочевинная технология перспективна для переработки

углеродсодержащих глинистых золотоносных руд, а также мышьяксодержащих. В

цианистом процессе серьезные трудности вызывает наличие меди, при

тиомочевинном растворении это осложнение частично снимается вследствие

значительно меньшей скорости ее разложения, эффективно растворяется золото

в кислых растворах в присутствии окислителя. Установлено, что наилучшим из

исследованных реагентов является раствор тиомочевины с добавками серной

кислоты и трехвалентного железа. При этом окислительно-восстановительный

потенциал не может быть ниже 125–130 мВ (из-за осаждения золота) и выше

160–165 мВ (из-за окисления свободной тиомочевины). Стабилизация его в ходе

процесса на определенном уровне может осуществляться, например, добавками

сернистого газа. Эксперименты показали, что в случае тиомочевинного

выщелачивания золото извлекаешься с большей полнотой, чем цианированием: 90

– 97% против 81–92%. Показана возможность использования растворов

тиомочевины в замкнутом цикле с концентрацией железа не выше 10–12 г/л.

В результате промышленных испытаний установлено: тиомочевинное

выщелачивание золота возможно, причем извлечение его равно или выше, чем

при планировании; в случае тонкой вкрапленности золота такое выщелачивание

не имеет кинетических преимуществ перед цианированием; тиомочевинная

технология может оказаться рентабельной даже с низким извлечением (60%)

выщелачивания углеродсодержащих руд, которые невозможно перерабатывать

иными способами, она может быть использована для переработки низкосортных

золотосодержащих отвалов.

В промышленном масштабе тиомочевина применяется лишь на предприятиях с

очень богатым концентратом, что оправдывает затраты на реагент. В России в

результате испытаний на опытных установках выявлены недостатки способа:

длительность операции закисления, высокий расход кислоты, обогащение

продуктивных растворов элементами-примесями и др.

Эксплуатационные затраты при тиокарбамидном выщелачивании в целом

примерно на 25% меньше, чем для цианирования за счет существенно (более чем

в три раза) меньших затрат на обезвреживание промышленных стоков.

Тиосульфатное и аммиачно-тиосульфатное

выщелачивание

Процессы тиосульфатного и аммиачно-тиосульфатного выщелачивания золота

протекают по следующим реакциям:

4Au + O2 + 8S2O32- + 4H+ > 4Au(S2O3) 23- + H2O,

Au + 5S2O32- + Cu(NH3)42+ > Au(S2O3) 23- + 4NH3 + Cu(S2O3)35-

Образующийся тиосульфатный комплекс золота очень прочный (константа

диссоциации равна 10-26).

Наличие растворимой меди и сульфидов может замедлить процесс аммиачно-

тиосульфатного растворения золота, если не принять специальных мер. В

частности, его рекомендуется проводить в слабоокислительной среде.

Аммиачно-тиосульфатное выщелачивание применимо к упорным для

цианистого процесса рудам: марганцевым и медистым. Оптимальные условия

сохраняются поддержанием в растворе рН на уровне 7–8 ед. Это обеспечивает

устойчивость тиосульфат-ионов. Установлено, что при их отсутствии

извлечение золота резко падает, кроме того, для повышения скорости реакции

рекомендуется вводить в систему элементарную серу. Испытания, проведенные с

рудами ряда месторождений США и Мексики, показали, что выщелачивание

реагентом, состоящим из смеси тиосульфата и сульфита аммония, обеспечивает

извлечение золота в пределах 50 – 96%. Аммиачными тиосульфатными растворами

можно добывать золото и серебро из хвостов окислительного выщелачивания в

присутствии меди.

Окислительное выщелачивание

минеральными кислотами и солями

Этот способ применим для добычи серебра и, в меньшей степени, золота.

Имеется патент на селективное солянокислое выщелачивание золота, серебра,

свинца, сурьмы и висмута из арсенатов. Процесс проводят при рН = 1 и с

наличием в растворе железа (2–4 г/л).

Для переработки материалов, содержащих благородные металлы,

рассмотрена возможность использования гидрохлорирования, имеющего некоторые

преимущества, по сравнению с цианистым процессом: большая концентрация

окислителя (молекулярный хлор) в растворе обусловливает высокую скорость

процесса; возможность получения солянокислых растворов, из которых удобно

выделять золото электролизом, переработки ряда упорных для цианирования

золотосодержащих материалов, в том числе углистых, медистых, мышьяковистых

и других, а также разделения золота и серебра при их осаждении из

солянокислых растворов.

Экологически чистый способ извлечения благородных металлов из руд, в

том числе карбонатных, включает их обработку водным раствором, содержащим

хлоридные и гипохлоридные ионы, восстановление металлов цементацией,

регенерацию ионов гипохлорита электрохимическим способом и повторное

использование выщелачивающего раствора. Гипохлорирование применяется для

предварительной обработки углеродсодержащих золотых руд перед

цианированием, чтобы извлечь золото из шлака, обогащенного сурьмой.

В опытно-промышленных масштабах исследовано извлечение золота и

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.