рефераты бесплатно
 

МЕНЮ


Вихревые горелки

поверхности внутренней трубы горелки, особенно вверх по потоку от отверстия

тангенциальной подачи.

2. Закручивающее устройство с адаптивным блоком имеет относительно

низкую эффективность при низкой и средней интенсивности закрутки (?=58% при

S=0,4), но его эффективность остается неизменной и может даже повышаться

при более высокой интенсивности закрутки.

3. Закручивающий аппарат с радиальной подачей потока имеет

относительно высокую эффективность (?=75% при S=1).

4. Закручивающий аппарат с осевой подачей имеет относительно низкую

эффективность (?=30% при S=1).

Эффективность закрутки представляет собой меру создания конкретной

интенсивности закрутки S; это вовсе не мера эффективности создания

определенного типа поля течения; это означает, что при одинаковой

интенсивности закрутки различными типами закручивающих устройств (с

различными профилями скорости на выходе) создаются разные поля течения вниз

по потоку.

3. ТОПКИ, ГОРЕЛКИ И ЦИКЛОНЫ

На рис.1.30 приведен эскиз экспериментальной топки Международной

организации исследования горения (IFRF) с переменным отводом тепла,

использованной для подробного экспериментального исследования гидродинамики

и теплообмена. Топка имеет длину примерно 6,3 м и поперечное сечение 2Х2 м.

Она состоит из 17 поперечных охлаждаемых водой секций. Горелка и труба

расположены в центре торцевых поверхностей. Во время испытаний серии М-3

использовались две высокоскоростные туннельные горелки для природного газа,

показанные на рис.1.31, в которых достигается полное сгорание на выходе из

горелки. Продукты сгорания поступают в топку без закрутки и горизонтально

или под углом 25° к горизонту. В предыдущих испытаниях в IFRF были

исследованы пламени распыленной нефти и измельченного в порошок угля с

закруткой.

[pic]

Рис.1.30. Экспериментальная топка IFRF для исследования теплообмена в

серии испытаний М-3.

Существует много различных типов топок - топка котла электростанции

отличается, например, от топок в металлургической и обрабатывающей

промышленностях. Топки играют важнейшую роль в современном обществе, и их

эффективность и характеристики загрязнения среды могут привести к далеко

идущим последствиям. Однако во всех случаях особенно важной является

возможность управления пламенем с целью создания заданных распределений

лучистого и конвективного теплообмена, полного сгорания, предотвращения

шума, пульсации и чувствительности к изменениям свойств топлива. В

большинстве топок пламени придается некоторая закрутка с целью повышения

устойчивости, тогда как в некоторых других случаях, например в котлах с

тангенциальной подачей топлива, потоки на входе направляются тангенциально

к огневому ядру, образующемуся в центре камеры.

[pic]

Рис.1.31. Конструкции высокоскоростных туннельных горелок: а -

горизонтальная; б - наклонная.

Тогда в камере с закруткой возникает слабый эффект циклонного типа или

в результате получается циклонная камера с движением закрученного потока

относительно геометрической оси оборудования. Важными конечными

характеристиками процесса являются температура, распределение тепловых

потоков на стенках и эффективность сгорания, и они непосредственно связаны

с образованием загрязняющих веществ, таких, как сажа и оксиды азота.

Конструктору и оператору необходимо знать, как эти параметры зависят от

количества движения и угла подачи струй топлива, температуры предварительно

подогретого воздуха и формы камеры. Ясно, что проблема моделирования очень

сложна, она включает взаимодействие турбулентного горения многих химических

компонент с многофазными процессами (частицы жидкого или твердого топлива и

углерода в поле течения) и с лучистым теплопереносом. Как указывается в

литературе, моделирование в той или иной степени включает распределение по

размерам частиц (рассчитанное в диапазонах конечных размеров во всех точках

области), потоковые или. зонные характеристики лучистого теплопереноса и

данные о распределении сажи (сажа образуется в результате термического

разложения углеводородов и ликвидируется окислением; оба процесса

представляют собой сложную задачу химической кинетики).

В случае турбулентных диффузионных пламен процесс сгорания

определяется структурой потока и смешением. В обзоре обсуждаются методы

расчета, основанные на законах подобия турбулентных струй, теории потока в

гомогенном реакторе и на полных уравнениях в частных производных для

турбулентного течения. При сгорании капель и частиц необходимо учитывать

скорости гетерогенных реакций и требуется знать распределения частиц по

размерам и в пространстве. Эмиссия загрязняющих веществ, таких, как

углеводороды, сажа и оксиды азота, может быть уменьшена соответствующим

управлением закономерностями изменения температуры и концентрации в области

сгорания. В обзоре представлены также методы расчета лучистого потока тепла

от пламени к тепловым стокам в порядке возрастающей сложности: модель с

хорошим перемешиванием, модель длинной топки, многопотоковая модель и

зонный метод анализа.

Рассмотрим теперь некоторые применения закрученных течений: в

горелках, вихревых устройствах и циклонах.

Особый случай представляют тороидальные горелки (рис.1.36), которые

конструируются специально для достижения высокой интенсивности

тепловыделения при высокой температуре в результате сжигания жидкого или

газообразного топлива с непосредственным использованием кислорода. Продукты

сгорания с высокой степенью диссоциации обеспечивают очень большие

конвективные потоки тепла при рекомбинации на более холодных поверхностях;

примеры их применения включают процессы рафинирования стали и меди при их

производстве электродуговым методом или в мартеновских печах. В этих

горелках иногда возникает неустойчивость, аналогичная встречающейся в

ракетных двигателях. Для ракетных двигателей характерны три основных типа

неустойчивости: неустойчивость в камере сгорания, неустойчивость системы и

собственная неустойчивость. К первой категории относятся явления

гидродинамической неустойчивости, возникающие во многих системах сгорания,

но особенно в камерах сгорания твердотопливных и гибридных ракетных

двигателей. Пример приведен на рис.1.37, где в определенной конструкции

камеры сгорания, аналогичной тороидальной горелке, возникает

гидродинамическая неустойчивость. Вблизи форсунки образуется тороидальный

вихрь. Он захватывает горячие газообразные продукты сгорания, поступающий

из форсунки окислитель, газообразное горючее из области поверхности

горючего, соприкасающейся с вихрем. При критических условиях смесь этих

газов воспламеняется и сгорает, создавая местное повышение давления,

распространяющееся вниз по потоку. Этот процесс периодически повторяется.

Во многих других типах циклонных пылевых газоочистителей, циклонных

сепараторов, пылеосадителей с вращающимся потоком и форсунок для распыления

жидкого топлива используются свойства закрученного и вихревого течений.

Например, в циклонных сепараторах (рис.1.38) крупные частицы отбрасываются

к стенкам под действием центробежных сил (или вследствие недостаточной

величины центростремительных сил) в сильно закрученном потоке. Они

опускаются вместе со вторичным течением и собираются в нижней части, в то

время как относительно свободный от пыли воздух продолжает движение в

центральном ядре и выходит у противоположного конца.

Центробежные эффекты также проявляются в нагревателях типа бака с

перемешиванием, когда бак с жидкостью нагревается от окружающей паровой

рубашки. Перемешивание жидкости с помощью колеса с лопатками и

установленные на стенке перегородки увеличивают турбулентность и

интенсифицируют теплоперенос.

[pic]

[pic]

[pic]

4. ХАРАКТЕРНЫЕ ОСОБЕННОСТИ ЗАКРУЧЕННЫХ ПОТОКОВ

В топливосжигающих устройствах наряду с другими возможностями

воздействия на характеристики пламени часто используется закрутка .

Закрутка воздуха, впрыскиваемого топлива или того и другого весьма

благоприятно сказывается на структуре течения, что в свою очередь

способствует достижению проектных характеристик устройств. Для того чтобы

придать потоку вращение, используются лопаточные завихрители, закручивающие

устройства с аксиально-тангенциальным подводом, а также непосредственный

тангенциальный вдув в камеру сгорания. Интенсивность закрутки обычно

характеризуется безразмерным параметром S, который представляет собой

отношение потока момента количества движения к потоку осевого импульса,

умноженному на эквивалентный радиус сопла. Согласно экспериментальным

данным закрутка влияет на крупномасштабную структуру потока и

пропорционально своей интенсивности изменяет ширину струи, скорость

эжекции, темп вырождения неравномерности (в химически инертных потоках),

размер, форму и устойчивость факела и интенсивность процесса горения (в

потоках с химическими реакциями). В сильнозакрученных потоках (где S > 0,6)

имеются значительные осевые и радиальные градиенты давления, которые

приводят к образованию ЦТВЗ, отсутствующей при меньших значениях параметра

закрутки. Наличие этой зоны с интенсивной завихренностью способствует

выполнению ряда требований, предъявляемых к камерам сгорания, а именно

позволяет:

1. Уменьшить длину факела за счет повышения скорости эжекции воздуха

из окружающей среды и увеличения интенсивности перемешивания вблизи среза

сопла и границ рециркуляционной зоны.

2. Повысить устойчивость факела благодаря вовлечению горячих продуктов

сгорания в рециркуляционную зону.

3. Увеличить время жизни оборудования и уменьшить потребность в его

ремонте, поскольку стабилизация осуществляется аэродинамическими

средствами, и потому воздействие пламени на твердые поверхности

(воздействие, приводящее к перегреву и образованию нагара) минимально.

Кроме ЦТВЗ, появляющейся при значениях параметра закрутки, превышающих

некоторую критическую величину, в канале с внезапным расширением может

возникать угловая рециркуляционная зона. О существовании этой зоны и о ее

влиянии на характеристики пламени хорошо известно специалистам по горению,

которые стараются использовать рециркуляцию горячих продуктов сгорания и

плохообтекаемую форму зоны как средство повышения эффективности процесса

горения. В сложных турбулентных реагирующих потоках взаимное влияние

распыления топлива, закрутки, больших сдвиговых напряжений и

рециркуляционных зон сильно осложняет исследование устойчивости пламени,

его осредненных и пульсационных характеристик.

Как уже отмечалось, даже основные свойства течения количественно

определены с недостаточной степенью точности; это относится, например, к

угловой и приосевой рециркуляционным зонам, существование, форма и размер

которых зависят в основном от следующих факторов:

1. Интенсивность закрутки; характеризуется параметром закрутки S или

углом установки лопаток завихрителя ?.

2. Способ создания закрутки - с помощью лопаточного завихрителя или

закручивающего устройства с тангенциальным подводом, а в зависимости от

типа устройства реализуется вращение по закону свободного вихря, по закону

вращения как целого или поток с равномерным распределением окружной

скорости.

3. Наличие втулки (отношение d/dh).

4. Степень диффузорности камеры сгорания (отношение D/d).

5. Наличие на выходе вихревой горелки диффузорной надставки (из

огнеупора) или камеры с внезапным расширением.

Форма надставки, угол наклона торцевой стенки камеры с внезапным

расширением ?.

6. Процесс горения.

7. Поджатие выходного сечения камеры сгорания.

8. Форма лопаток завихрителя - плоские или профилированные.

9. Форма лопаток завихрителя - радиальные или пространственные.

[pic]

Рис. 4.1. Схема вихревой горелки с аксиально-тангенциальным подводом:

1 - трубка для впрыска топлива; 2 — аксиальная подача воздуха; J —

тангенциальная подача воздуха; 4 — направляющие устройства; 5 — четыре

прямоугольных отверстия размером 20 X 100 мм для тангенциальной подачи

воздуха.

На практике наиболее распространены два типа топливосжигающих

устройств, в которых используется закрутка:

[pic]

Рис.4.2. Схема камеры сгорания циклонного типа с распределенной

подачей топлива и воздуха (конструкция ЭНИН). Камера относится к типу IV.

1) вихревая горелка (рис.4.1), из которой поток истекает в атмосферу,

в топку или замкнутую полость. Горение происходит главным образом за

сечением выхода вне горелки. Набор таких горелок можно использовать для

поддержания огня в топке или в замкнутом объеме.

2) камера сгорания циклонного типа, в которой подвод воздуха

осуществляется тангенциально, а выхлоп производится через отверстие в

центре торцевой поверхности (рис. 4.2). Горение происходит главным образом

внутри циклона, а его стенки часто служат теплообменником.

При достаточно больших значениях числа Рейнольдса и большой величине

параметра закрутки (Re > 1,8?104 и S > 0,6) в обоих системах образуется

ЦТВЗ и генерируется высокий уровень турбулентности. Циклоны обычно

используются для сжигания плохо горящих материалов, таких, как бурый уголь,

уголь с большой зольностью или органические отходы. Течения с сильной

закруткой, приводящей к образованию рециркуляционных зон, можно создать

различными способами:

. тангенциальным подводом (закручивающее устройство с аксиально-

тангенциальным подводом)

. непосредственным вращением (вращающаяся труба);

. спиральным закручивающим устройством;

. эймёйденским закручивающим устройством с адаптивными блоками (более

подробное описание дано ниже.

При создании лопаточных завихрителей в настоящее время используются

профилированные пространственные лопатки, которые более эффективно

закручивают поток. У таких лопаток передняя кромка располагается навстречу

набегающему потоку, и потому отрывная зона минимальна, а в результате

получается более равномерный поток на выходе. Важной характеристикой таких

лопаток является угол установки задней кромки.

Помимо параметра закрутки поток, в котором наблюдается явление распада

вихря, характеризуется также числом Рейнольдса, определяющимся параметрами

на выходе из сопла и его диаметром:

где Ucp — среднее значение осевой составляющей скорости,.

v—кинематическая вязкость, зависящая от температуры на выходе из сопла.

При наличии в закрученном потоке прецессирующего вихревого ядра (ПВЯ)

необходимо, согласно учитывать еще несколько параметров:

—- приведенный момент количества движения; — поток момента

количества движения;

- приведенная интенсивность пульсации давления.

5. Изменение структуры потока с увеличением закрутки

С точки зрения организации процесса горения одно из наиболее

существенных и полезных явлений в закрученных струйных течениях — это

образование приосевой рециркуляционной зоны при сверхкритических значениях

параметра закрутки. Путем осреднения по большому интервалу времени границу

рециркуляционной зоны и зон обратных токов можно определить довольно точно.

Мгновенное же положение границ и точек торможения претерпевает значительные

колебания в пространстве, поскольку обычно в таких потоках уровень

турбулентных сдвиговых напряжений и интенсивности турбулентности очень

высок. Линии тока в кольцевой закрученной свободной струе, определенные по

измеренным распределениям осредненной по времени скорости.

Рециркуляционная зона играет важную роль в стабилизации пламени, поскольку

обеспечивает рециркуляцию горячих продуктов сгорания и сокращает размер

области, в которой скорость потока сравнивается со скоростью

распространения фронта пламени. Существенно укорачиваются длина факела и

расстояние от горелки, на котором происходит стабилизация пламени.

Конечно, воздействие закрутки на поток наряду с параметром S

определяется еще целым рядом факторов, например:

а) геометрией сопла (при наличии центрального тела размер

рециркуляционной зоны увеличивается, то же происходит при добавлении

диффузорной надставки на выходе);

б) ее размерами — когда истечение происходит в камеру (приосевая ре-

диркуляционная зона в стесненном потоке больше, чем в свободной струе при

одинаковых условиях истечения);

в) формой профиля скорости на выходе (рециркуляционная зона в потоке,

созданном лопаточным завихрителем, длиннее по сравннению со случаем

истечения из закручивающего устройства с аксиально-тангенциальным

подводом).

Размер и форма рециркуляционной зоны и соответствующей области с

повышенным уровнем турбулентности оказывают решающее влияние на

устойчивость факела, интенсивность процесса горения и другие характеристики

пламени.

[pic]

Рис. 4.5. Распределение продольной составляющей скорости вдоль оси при

различных значениях параметра закрутки [pic]

Рис. 4.6. Изменение максимальных значений параметров вдоль струи:

Изменение продольной составляющей 'скорости вдоль оси струи круглого

сечения при различных значениях параметра закрутки показано на рис. 4.5 ;

струя распространялась из закручивающего устройства с тангенциальным

подводом. При малых интенсивностях закрутки (5 0,6 на оси появляется

обратный поток. Специальный эксперимент, в котором параметр закрутки по

возможности непрерывно изменялся в диапазоне 0,3 ... 0,64, показал,. что

изменение распределения происходит монотонно, без скачков, не было

обнаружено существенной разницы и при повторении опыта с изменением 5 в том

же диапазоне, но в обратной последовательности, В соответствии с ростом

темпа расширения струи возрастает скорость эжекции, вследствии чего

ускоряется вырождение неравномерности скорости и концентрации жидкости,

истекающей из сопла. Это положение иллюстрируют экспериментальные данные,

представленные на рис. 4.6, где для различных значений параметра закрутки

приведены распределения вдоль струи максимальных значений продольной (рис.

4.6, а), окружной (рис. 4.6,6) и радиальной (рис. 4.6, в) скоростей. При

высокой интенсивности закрутки, когда начинает образовываться

рециркуляционная зона и появляются области малых или отрицательных значений

продольной составляющей скорости, ее максимум смещен от оси струи. Отметим,

что вниз по потоку максимальные значения продольной и радиальной

составляющих скорости, а также минимальное значение давления изменяются

обратно пропорционально' приведенному расстоянию от среза сопла в степенях

один, два и четыре соответственно.

6. Структура рециркуляционной зоны

[pic]

Рис. 4.7. Изолинии функции тока Штриховая линия соответствует нулевым

значениям продольной скорости

[pic]

Рис. 4.9а Изолинии приведенной кинетической энергии турбулентности.

Штриховой линией обозначена граница зоны обратных токов.

[pic]

Рис. 4.96. Изолинии безразмерной среднеквадратичной величины пульсации

окружной скорости {w' ) /uq.

В рециркуляционной зоне интенсивность турбулентности достигает очень

высокого уровня. На границе обратного течения, где средняя скорость равна

0, величина локальной интенсивности турбулентности стремится к

бесконечности. Измерения всех шести компонент тензора турбулентных

напряжений показывают, что распределение кинетической энергии

турбулентности сильно неоднородно, а напряжение и соответственно тензор

коэффициентов турбулентной вязкости сильно неизотропны .На рис. 4.9а

показано, что приведенная кинетическая энергия турбулентности достигает

значения 300% за кромкой сопла и быстро затухает на расстоянии, равном

одному диаметру. При отдельном рассмотрении пульсации продольной и окружной

скоростей обнаруживается сильная анизотропия турбулентности. Максимум

пульсации окружной скорости (рис.4.9б) наблюдается прямо под кромкой сопла

при 2r/d=0,8, причем пульсации быстро затухают по направлению к оси

симметрии. Интенсивность пульсации продольной скорости имеет два

максимума, один сразу за кромкой при 2r/d=0,9 и другой внутри вихревой

горелки вблизи оси симметрии. Высокие уровни турбулентности обусловлены

трехмерным нестационарным возмущением закрученного течения – так называемым

прецессирующим вихревым ядром.

Распределения характеристик турбулентности в слабозакрученных струях

(S 0,5), ПВЯ не является определяющим элементом

течения, и эффективный максимум турбулентных пульсации в некоторых горелках

уменьшаетсяо и позволяет использовать методы, основанные на измерении

пульсации давления . Спектральный анализ пульсации давления в вихревых

горелках показывает, что осцилляции носят более случайный характер, чем в

изотермическом потоке, а следовательно, при горении изменяется и природа

процесса смешения. В изотермическом потоке доминируют пульсации скорости,

имеющие довольно регулярный характера а при горении имеющие случайный,

турбулентный характер только закруткой, но также и наличием диффузора с

полууглом раскрытия 35°. Действительно, если выходная часть имеет

цилиндрическую форму, то при такой интенсивности закрутки распад вихря

только начинается и рециркуляционная зон только зарождается. Результаты

показывают, в частности, что в реагирующих потоках в рециркуляционных

областях течение существенно неизотропно. При горении интеграл от пульсации

скорости, взятый по всему полю течения, значительно больше, чем в

изотермическом потоке, что в определенном смысле подтверждает гипотезу о

генерации турбулентности при наличии пламени.

Как показывают эти исследования, характеристики потоков с горением и

без горения значительно различаются, в особенности это касается

распределения продольной скорости, формы. поперечного размера и

протяженности зоны обратных токов. В отличие от результатов, полученных в

работах, здесь при горении протяженность и поперечный размер зоны обратных

токов значительно возрастали, зона обратных токов простиралась вниз по

потоку по крайней мере на расстояние, равное двум диаметрам выходного

сечения. Интенсивность пульсации продольной составляющей скорости везде, за

исключением области вблизи выходного сечения горелки, при горении

уменьшалась. Высокий уровень пульсации продольной скорости наблюдался

вблизи границы рециркуляционной зоны. здесь же проявлялась существенная

анизотропия пульсации. Вообще, существенная разница интенсивностей

пульсации продольной и окружной скоростей в потоках с горением и без

горения наблюдается в большей части поля течения.

Измерения показывают, что имеется сильная перемежаемость внутри и

вокруг рециркуляционной зоны, что свидетельствует о ее нестационарном

характере. Проведены также измерения в слое смешения стесненного

турбулентного диффузионного факела. Распределения продольной и окружной

осредненных по времени скоростей, среднеквадратичных значений пульсации

скорости, распределение плотности вероятности показывают, что осредненные и

нестационарные характеристики поля течения существенно изменяются при

вариации давления на выходе из камеры сгорания и закрутки воздуха на входе.

Эти изменения заметно влияют на выбросы загрязняющих веществ. Обнаружен

существенный вклад крупномасштабных пульсации в суммарное

среднеквадратичное значение турбулентных пульсации скорости. Влияние

крупномасштабных пульсации приводит к отличию случайного процесса от

гауссова и к существенной анизотропии турбулентности в большей части

начального участка. Отмеченное обстоятельство показывает, что модели

турбулентности, основанные на гипотезе о локальном равновесии, неадекватно

описывают физические процессы в потоке с горением

В настоящее время для потоков с горением, особенно для стесненных

потоков, имеется значительное количество данных о зависимости величины

потока массы, вовлеченной в рецирку-ляционное движение, от параметра

закрутки.Рассмотрим вначале свободные течения за вихревой горелкой.

Сравнивая результаты, полученные в условиях с горением и без него, можно

заметить, что горение приводит к значительному уменьшению величины потока

массы, вовлеченной в рециркуляционное движение, особенно при соотношении

расходов топлива и воздуха, близких к стехиометрическому, и при

предварительном перемешивании компонент. Помимо этого рециркуляционная зона

в потоке с горением короче и шире, чем в холодном потоке. Начало распада

вихря и зарождение рециркуляции происходят при

Сравнение границ зоны обратных токов при различных значениях параметра

закрутки в потоке с горением предварительно перемешанных компонент

приведено на рис. 4.4. При увеличении параметра закрутки от 0,7 до 1,25

увеличиваются как ширина, так и длина зоны. То же самое должно наблюдаться

и в изотермическом потоке, т. е. с ростом параметра закрутки длина зоны

обратных токов должна увеличиваться. Следует заметить, что за лопаточным

завихрителем без втулки: зоны обратных токов длинные и узкие, и потому

такие завихрители обычно не применяются. За кольцевым лопаточным

завихрителем зона обратных токов при тех же параметрах закрутки значительно

шире и короче. Для стабилизации пламени весьма желательно, чтобы зона

обратных токов была короткой и компактной, поскольку в длинной зоне

рециркуляция холодных продуктов сгорания приводит к уменьшению полноты

сгорания и сужению пределов срыва пламени. На характеристики течения за

вихревой горелкой, так же как на характеристики изотермического течения,

влияет степень стеснения потока, причем определяющими здесь являются такие

параметры, как отношение диаметра горелки к диаметру топки, коэффициент

избытка воздуха и выходной диаметр топки. При достаточно высоких

интенсивностях закрутки в потоке с горением, так же как и изотермическом

потоке, образуется пристенная веерная струя, периферийная рециркуляционная

зона исчезает и пламя прилипает к лицевой стенке камеры. Этот эффект должен

иметь место при параметрах закрутки

S > 1.5, в то время как при S=1.25 еще существует периферийная

рециркуляционная зона.

В топках с вихревой горелкой можно сжигать газовые отходы

обладающие очень низкой теплотой сгорания: для этого необходимо топку

облицевать огнеупорным материалом и хорошо теплоизолировать.

9.ПРЕДЕЛЫ СРЫВА И УСТОЙЧИВОСТЬ ПЛАМЕНИ

В промышленных горелках, работающих на различных газообразных и жидких

топливах, типичное значение параметра закрутки лежит в диапазоне 0.8 0,8 рекомендуется

использовать закручивающее устройство с тангенциальным подводом или

завихритель с профилированными лопатками (изогнутыми для того, чтобы

уменьшить потери на отрыв). В системе с аксиальным подводом желаемую

степень закрутки можно получить, пропуская необходимое количество газа

через лопаточный завихритель. Если же используется тангенциальный подвод,

то для получения симметричного течения необходимо выпустить поток через ряд

отверстий (по меньшей мере через четыре). В закручивающем устройстве с

тангенциальным подводом диаметр горловины должен равняться половине

внешнего диаметра, т.е. De/Do = 0,5, что позволяет свести к минимуму потери

полного давления.

4. На горелку необходимо устанавливать диффузорную надставку из

огнеупора, при этом следует руководствоваться правилом:

S > 0,5: полуугол раскрытия диффузора от 20° до 35°;

S < 0,5: полуугол раскрытия диффузора от 20° до 25°;

длина надставки (для получения факела типа II) Lдифф = 0,5Dе.

Диффузор на выходе существенно увеличивает размеры приосевой

рециркуляционной зоны при всех интенсивностях закрутки.

5. Для получения факела типа I в горелке с диффузорной надставкой с

полууглом раскрытия от 20° до 35° в целях обеспечения хорошей устойчивости

пламени необходимо подавать газообразное топливо со скоростью, примерно

втрое превышающей скорость воздуха. Тепловая нагрузка может быть

значительно увеличена за счет удлинения диффузорной надставки до длины

Lдифф = 1,5De. Следует придерживаться рекомендации 3, но для получения

факела типа I лучше не использовать лопаточные завихрители, поскольку в

этом случае газовая струя горящего топлива не сможет пробить

рециркуляционную зону.

6. Следует проявлять осторожность при использовании вихревых горелок с

диффузорной надставкой в топках с большим стеснением факела или в

ситуациях, когда горелки расположены близко друг к другу. Экспериментальные

данные позволяют предположить, что приосевая рециркуляционная зона

пропадает при Af / Ab > 4 (S ? 1). Таким образом, в указанных ситуациях

предпочтительнее горелки с цилиндрической выгодной частью, за которыми

образуются рециркуляционные зоны с интенсивным движением в них.

7. Горелки с тангенциальным подводом не годятся для сжигания

предварительно перемешанных газообразного топлива и воздуха, поскольку в

них пламя может легко распространяться вверх по потоку от мест подвода

(исключения составляют газообразные топлива с низкой теплотой сгорания -

менее 3 ... 4 МДж/м3). Предварительно перемешанные газообразное топливо и

воздух можно сжигать в горелках с лопаточными завихрителями.

Влияние вида топлива (уголь, нефть, синтетическое топливо) на

характеристики вихревой горелки опять-таки трудно параметризовать, но можно

указать следующую основную закономерность: длина факела возрастает при

последовательном переходе от газообразных топлив к легким жидким топливам

(бензин), от них к тяжелым жидким топливам (мазут, некоторые синтетические

топлива) и, наконец, к распыленному углю. Такая последовательность отражает

уменьшение испаряемости топлива. При сжигании распыленного угля обычно

необходимо использовать в качестве носителя около 20 % подаваемого воздуха.

При сжигании мазута необходимо для стабилизации пламени добавлять к

форсунке дисковый стабилизатор.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Парогенераторы промышленных предприятий.

Л. Н. Сидельковский, В. Н. Юренев.

2. Теория горения и топочные устройстваю

Д. М. Хазмалян, Я. А. Каган.

3. Закрученные потоки.

А. Гупта, Д. Лилли, Н. Сайред.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.