рефераты бесплатно
 

МЕНЮ


Учебное пособие: Безопасность жизнедеятельности

НРБ-76/87)

Дозовые пределы суммарного внешнего и внутреннего облучения, бэр за календарный год Группы критических органов
I II III

Предельно допустимая доза (ПДД) для категории А

Предел дозы (ПД) для категории Б(ПД)

5

0,5

15

1,5

30

3

Примечание. Распределение дозы излучения в течение календарного года не регламентируется (за исключением женщин в возрасте до 40 лет, отнесенных к категории А) 1 бэр = 1 Зв.

3.2.5. Электрический ток

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое и биологическое действия.

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также многовенного взрывоподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов.

Электротравмы условно разделяют на общие и местные. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности. Остановка сердца связана с фибрилляцией – хаотическим сокращением отдельных волокон сердечной мышцы (фибрилл). К местным травмам относят ожоги, металлизацию кожи, механические повреждения, электроофтальмии. Металлизация кожи связана с проникновением в нее мельчайших частиц металла при его расплавлении под влиянием чаще всего электрической дуги.

Исход поражения человека электротоком зависит от многих факторов: силы тока и времени его прохождения через организм, характеристики тока (переменный или постоянный), пути тока в теле человека, при переменном токе – от частоты колебаний.

Ток, проходящий через организм, зависит от напряжения прикосновения, под которым оказался пострадавший, и суммарного электрического сопротивления, в которое входит сопротивление тела человека. Величина последнего определяется в основном сопротивлением рогового слоя кожи, составляющее при сухой коже и отсутствии повреждений сотни тысяч ом. Если эти условия состояния кожи не выполняются, то ее сопротивление падает до 1 кОм. При высоком напряжении и значительном времени протекания тока через тело сопротивление кожи падает еще больше, что приводит к более тяжелым последствиям поражения током. Внутреннее сопротивление тела человека не превышает нескольких сот ом и существенной роли не играет.

На сопротивление организма воздействию электрического тока оказывает влияние физическое и психическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводят к снижению сопротивления. Характер воздействия тока на человека в зависимости от силы и вида тока приведен в табл.3. 19.

Таблица 3. 19. Характер воздействия тока на человека (путь тока рука –

нога, напряжение 220 В)

Ток, мА Переменный ток, 50 Гц Постоянный ток
0,6...1,5 Начало ощущения, легкое дрожание пальцев Ощущений нет
2,0...2,5 Начало болевых ощущений То же
5,0...7,0 Начало судорог в руках Зуд, ощущение нагрева
8,0...10,0 Судороги в руках, трудно, но можно оторваться от электродов Усиление ощущения нагрева
20,0. .,25,0 Сильные судороги и боли, неотпускающий ток, дыхание затруднено Судороги рук, затруднение дыхания
50,0...80,0 Паралич дыхания То же
90,0...100,0 Фибрилляция сердца при действии тока в течение 2–3 с, паралич дыхания Паралич дыхания при длительном протекании тока
300,0 То же, за меньшее время Фибрилляция сердца через 2–3 с, паралич дыхания

Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10с – 2 мА, при 10 с и менее – 6 мА. Ток, при котором пострадавший не может самостоятельно оторваться от токоведущих частей, называется неотпускающим.

Переменный ток опаснее постоянного, однако, при высоком напряжении (более 500 В) опаснее постоянный ток. Из возможных путей протекания тока через тело человека (голова –рука, голова –ноги, рука –рука, нога –рука, нога –нога и т.д.) наиболее опасен тот, при котором поражается головной мозг (голова–руки, голова– ноги), сердце и легкие (руки –ноги). Неблагоприятный микроклимат (повышенная температура, влажность) увеличивает опасность поражения током, так как влага (пот) понижает сопротивление кожных покровов.

При гигиеническом нормировании ГОСТ 12.1.038–82* устанавливает предельно допустимые напряжения прикосновения и токи, протекающие через тело человека (рука – рука, рука – нога) при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц (табл.3. 20).

Таблица 3. 20. Предельно допустимые уровни напряжения и тока.

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воздействия тока, Iа, с.

Переменный,

50 Гц

Переменный,

400 Гц

Постоянный

Выпрямленный двухполупериодичный

Выпрямленный однополупереодичный

Ua, B

Ia, мА

Ua, B

Ia, мА

Ua, B

Ia, мА

Ua, B

Ua, B

0,01… 0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св.1,0

650

650

650

650

650

500

500

500

500

500

250

500

400

400

400

165

330

350

300

300

125

250

300

270

250

100

200

250

230

200

85

170

240

220

190

70

140

230

210

180

65

100

220

200

170

55

110

210

190

160

50

100

200

180

150

36

6

36

8

40

15

3.2.6. Сочетанное действие вредных факторов

В условиях среды обитания, особенно в производственных условиях, человек подвергается, как правило, многофакторному воздействию, эффект которого может оказаться более значительным, чем при изолированном действии того или иного фактора.

Установлено, что токсичность ядов в определенном температурном диапазоне является наименьшей, усиливаясь как при повышении, так и понижении температуры воздуха. Главной причиной этого является изменение функционального состояния организма: нарушение терморегуляции, потеря воды при усиленном потоотделении, изменение обмена веществ и ускорение биохимических процессов. Учащение дыхания и усиление кровообращения приводят к увеличению поступления яда в организм через органы дыхания. Расширение сосудов кожи и слизистых повышает скорость всасывания токсических веществ через кожу и дыхательные пути Усиление токсического действия при повышенных температурах воздуха отмечено в отношении многих летучих ядов: паров бензина, паров ртути, оксидов азота и др. Низкие температуры повышают токсичность бензола, сероуглерода и др.

Повышенная влажность воздуха увеличивает опасность отравлений особенно раздражающими газами. Причиной этого служит усиление процессов гидролиза, повышение задержки ядов на поверхности слизистых оболочек, изменение агрегатного состояния ядов. Растворение ядов с образованием слабых растворов кислот и щелочей усиливает их раздражающее действие.

Изменение атмосферного давления также влияет на токсический эффект. При повышенном давлении усиление токсического эффекта происходит вследствие двух причин: во-первых, наибольшего поступления ядов вследствие роста парциального давления газов и паров в атмосферном воздухе и ускоренного перехода их в кровь, во-вторых, за счет изменения функций дыхания, кровообращения, ЦНС и анализаторов. Пониженное атмосферное давление усиливает воздействие таких ядов, как бензол, алкоголь, оксиды азота, ослабляется токсическое действие озона.

Из множества сочетаний неблагоприятных факторов наиболее часто встречаются пылегазовые композиции. Газы адсорбируются на поверхности частиц и захватываются внутрь их скоплений. При этом локальная концентрация адсорбированных газов может превышать их концентрацию непосредственно в газовой фазе. Токсичность аэрозолей в значительной мере зависит от адсорбированных или содержащихся в них газов. Токсичность газоаэрозольных композиций подчиняется следующему правилу: если аэрозоль проникает в дыхательные пути глубже, чем другой компонент смеси, то отмечается усиление токсичности. Токсичность смесей зависит не только от глубины проникновения в легкие, но и от скорости адсорбции и, главное, десорбции яда с поверхности частиц. Десорбция происходит в дыхательных путях и альвеолах и ее активность связана с физико-химическими свойствами поверхности аэрозолей и свойствами газов. Адсорбция тем выше, чем меньше молекула газа. При значительной связи газа с аэрозолем (капиллярная конденсация, хемосорбция) комбинированный эффект обычно ослабляется.

Рассматривая сочетанное действие неблагоприятных факторов физической и химической природы, следует отметить, что на высоких уровнях воздействия наблюдаются потенцирование, антагонизм и независимый эффект. На низких уровнях, как правило, наблюдаются аддитивные зависимости. Известно усиление эффекта токсического действия свинца и ртути, бензола и вибрации, карбофоса и ультрафиолетового излучения, шума и марганецсодержащих аэрозолей.

Шум и вибрация всегда усиливают токсический эффект промышленных ядов. Причиной этого является изменение функционального состояния ЦНС и сердечно-сосудистой системы. Шум усиливает токсический эффект оксида углерода, стирола, крекинг-газа и др. Вибрация, изменяя реактивность организма, повышает его чувствительность к другим факторам, например, кобальту, кремниевым пылям, дихлорэтану; оксид углерода более токсичен в сочетании с вибрацией.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34


ИНТЕРЕСНОЕ



© 2009 Все права защищены.