рефераты бесплатно
 

МЕНЮ


Реферат: Характеристика свойств и строения древесины сосны

Характерным компонентом наружного слоя коры является суберин продукт сополиконденсации, главным образом, высших (С16-С24) насыщенных и одноненасыщенных алифатических а, дикарбоновых кислот с гидроксикислотами (последние могут быть дополнительно гидроксилированы). Участие в поликонденсации мономеров с тремя и более многофункциональными группами (карбоксильными, гидроксильными) приводит к образованию сложного полиэфира с сетчатой структурой. Некоторые исследователи допускают существование и простых эфирных связей. В результате суберин невозможно выделить из коры в неизмененном виде, так как он не экстрагируется нейтральными растворителями, а сложноэфирные связи делают его весьма лабильным компонентом. Из коры суберин выделяют в виде субериновых мономеров после омыления водным или спиртовым растворами щелочи и разложения образовавшегося суберинового мыла минеральной кислотой.

Суберин содержится в перидерме, в том числе и в раневой. Он локализуется в пробковых клетках, являясь составной частью клеточной стенки. Пробковые ткани пробкового дуба содержат (42-46) % суберина, бразильского тропического дерева паосанта (Kielmeyera coriacea ) — 45 %, а пробковые клетки березы бородавчатой — 45 % суберина. Массовая доля суберина во внешнем слое коры изредко превышает (2-3) %, но есть древесные породы, отличающиеся высоким содержанием суберина. В вышеперечисленных древесных породах субериновые мономеры составляют (2-40) % массы внешней части коры. Характерной особенностью пробковой ткани березы — бересты является накопление наряду с суберином тритерпенового спирта — бетулина. Состав субериновых мономеров весьма разнообразен. Кроме упомянутых выше дикарбоновых и гидроксикислот, в состав субериновых мономеров входят одноосновные жирные кислоты, одноатомные высшие жирные спирты (до 20 % массы суберина), фенольные кислоты, дилигнолы (димеры фенилпропановых единиц) и другие.

Как уже отмечалось, обработкой предварительно проэкстрагированной нейтральными растворителями коры однопроцентным водным раствором NaOH извлекается до (15-50) % материала, представляющего собой группу фенольных веществ, обладающих кислыми свойствами. Это дало повод назвать их полифенольными кислотами. Однако в них обнаружены не карбоксильные, а карбонильные группы. После осаждения из щелочного раствора лодкислением минеральными кислотами полифенольные кислоты становятся частично растворимыми в воде и полярных органических растворителях. По всей вероятности, «полифенольные кислоты» — полимерные вещества флавоноидного типа, родственные конденсированным танинам и способные поэтому в щелочной среде претерпевать перегруппировку с появлением карбонильных групп.

Существенные различия в строении и химическом составе коры и древесины обусловливают необходимость раздельной переработки этих составных частей биомассы дерева как с технологической, так и с экономической точек зрения. Однако существующие методы удаления коры (окорки) сопряжены с потерями древесины. В отходах окорки наряду с корой содержится значительное количество древесины, что осложняет химическую переработку такого сырья. Разнообразие представленных в коре химических соединений делает привлекательной идею извлечения наиболее ценных компонентов. Развитие данного направления утилизации коры сдерживается относительно низким содержанием извлекаемых компонентов. Вследствие этого основные направления переработки коры все еще ограничены ее утилизацией как органического материала в качестве топлива, в сельском хозяйстве и т.п. Редкие примеры использования коры отдельных древесных пород для выделения дубильных веществ, производства пробки, получения дегтя (из бересты березы) и выделения из коры растущих деревьев пихты пихтового бальзама не улучшают, к сожалению, общую картину неэффективного использования содержащихся в коре ценных органических соединений.

1.3 Физические свойства

Физическими называют такие свойства древесины, которые наблюдаются при взаимодействии её с внешней средой и не приводят к изменению состава и целостности древесины. Данные свойства характеризуются внешним видом древесины (цвет, блеск, текстура), плотностью, влажностью, гигроскопичностью, теплоёмкостью и другими.

1 Свойства, определяющие внешний вид древесины. Из числа таких свойств отметим её цвет, блеск и текстуру. Цвет древесины чрезвычайно разнообразен. Он зависит от породы дерева и климата. Как правило, древесные породы умеренного пояса имеют бледную окраску, а породы тропического пояса – яркую. Так, древесина сосны, ели, осины, берёзы окрашена слабо, а породы тёплой зоны (дуб, орех, самшит, белая акация) имеют более интенсивную окраску. Интенсивность окраски повышается с возрастом дерева. Древесина меняет свою окраску также под влиянием света и воздуха. Некоторые породы дерева обладают блеском. Блеск древесины зависит от степени развитости сердцевинных лучей. В радиальном разрезе блеском обладают такие породы, как клён, бук, белая акация, красное дерево. Сильно развитые сердцевинные лучи дуба в радиальном разрезе дают блестящие пятна. Текстура древесины представляет собой рисунок в радиальном или тангенциальном разрезе и зависит от строения древесины. Она складывается из ясно различимых крупных сосудов, широких сердцевинных лучей, годовых слоёв, направления волокон. Чем сложнее строение древесины, тем разнообразнее её текстура. Красивой текстурой в радиальном разрезе обладают породы дуба и бука, а в тангенциальном разрезе – ясень, каштан, орех, дуб, лиственница. Запах древесины зависит от нахождения в ней смолы, эфирных масел, дубильных и других веществ. Характерный запах смолы имеют хвойные породы – сосна, ель. Дуб имеет запах дубильных веществ. В свежесрубленном состоянии древесина обладает более сильным запахом, чем после высыхания.

2 Гигроскопичность и влажность. Древесина, имея волокнистое строение и большую пористость от 30 до 80 %, обладает огромной внутренней поверхностью, которая легко собирает водяные пары из воздуха (гигроскопичность). Влажность, которую приобретает древесина в результате длительного нахождения на воздухе с постоянной температурой и влажностью, называется равновесной влажностью. Она достигается в тот момент, когда упругость паров над поверхностью древесины оказывается равной упругости паров окружающего её воздуха. По содержанию влаги различают мокрую древесину – с влажностью до 100 % и более; свежесрубленную – 35 % и выше; воздушно-сухую – (15-20) %; комнатно-сухую – (8-12) % и абсолютно сухую древесину, высушенную до постоянной массы при температуре 100-105 °С. Вода в древесине может находиться в трёх состояниях – свободном, физически связанном и химически связанном. Свободная или капиллярная вода заполняет полости клеток и сосудов и межклеточные пространства. Связанная или гигроскопическая вода находится в стенках клеток и сосудов древесины в виде тончайших гидратных оболочек на поверхности мельчайших элементов, слагающих стенки клеток. Влажность древесины, когда стенки клеток насыщены водой, а полости и межклеточные пространства свободны от воды, называется приделом гигроскопической влажности. Для древесины различных пород она колеблется от 23 до 35 % (в среднем 30 %) от массы сухой древесины. Гигроскопическая вода, покрывая поверхность мельчайших частиц в стенках клеток водными оболочками, увеличивает и раздвигает их. При этом объём и масса древесины увеличиваются, а прочность снижается. Свободная вода, накапливаясь в полостях клеток, существенно не изменяет расстояние между элементами древесины и поэтому не влияет на её прочность и объём, увеличивая лишь массу и теплопроводность.

3 Усушка и разбухание. Усушка древесины с уменьшением её линейных размеров и объёма происходит только при испарении гигроскопической влаги, но не капиллярной. Однако при испарении гигроскопической влаги происходит линейное сокращение и, наоборот, при поглощении гигроскопической влаги – разбухание. Усушка древесины вследствие неоднородности её строения в различных направлениях неодинакова. Вдоль волокон линейная усушка для большинства древесных пород не превышает 0,1 %, в радиальном направлении – (3-6) %, а в тангенциальном – (7-12) %. Это сопровождается возникновением внутренних напряжений в древесине, что может вызвать ее коробление и растрескивание. Коробление может быть продольным и поперечным. При разбухании древесины в результате поглощения воды, пропитывающей оболочки клеток, она увеличивается в объёме. Разбухание древесины неодинаково в различных направлениях: вдоль волокон (0,1-0,8) %, в радиальном направлении (3-5) % и тангенциальном – (6-12) %. При увлажнении, в результате насыщения оболочек клеток водой, древесина увеличивается в весе и объеме. После дальнейшего насыщения древесины водой влага насыщает полости клеток и пространства между ними. При этом вес древесины изменяется. А объём не увеличивается.

4 Плотность и объемная масса. Так как в составе всех древесных пород преобладает одно и тоже вещество – целлюлоза, плотность их древесины примерно одинакова и составляет в среднем 1,54 г/ см3. Объемная масса древесины разных пород и даже одной и той же породы зависит от строения и пористости растущего дерева, изменяющихся от климата, почвы, затененности и других природных условий. У большинства древесных пород в абсолютно сухом состоянии она меньше 1 г/ см3 . С повышением влажности объемная масса древесины увеличивается, поэтому характеристика древесины по объемной массе всегда производиться при одинаковой влажности. В соответствии с ГОСТом объемную массу древесины принято определять при влажности в момент испытания 11-13 %, а также в абсолютно сухом состоянии. По объемной массе при влажности 12 % древесные породы разделяются на группы: малой плотности (540 кг/ м3), средней плотности (550-740 кг/ м3.), высокой плотности (750 кг/м3).

5 Теплопроводность. Теплопроводностью древесины называется ее способность проводить тепло через всю толщу от одной поверхности к другой. Теплопроводность сухой древесины незначительна, что объясняется пористостью ее строения. Коэффициент теплопроводности древесины (0,12-0,39) Вт/(м*град). Полости, межклеточные и внутриклеточные пространства в сухой древесине заполнены воздухом, который является плохим проводником теплоты. Благодаря низкой теплопроводности древесина получила широкое распространение в строительстве. Плотная древесина проводит теплоту несколько лучше рыхлой. Влажность древесины повышает ее теплопроводность, так как вода по сравнению с воздухом является лучшим проводником теплоты. Кроме того, теплопроводность древесины зависит от направления ее волокон и породы. Например, теплопроводность древесины вдоль волокон примерно вдвое больше, чем поперек.

6 Звукопроводность. Свойство материала проводить звук называется звукопроводностью. Она характеризуется скоростью распространения звука в материале. В древесине быстрее всего звук распространяется вдоль волокон, медленнее – в радиальном и очень медленно – в тангенциальном направлениях. Звукопроводность древесины в продольном направлении в 16 раз, а в поперечном в три-четыре раза больше звукопроводности воздуха. Это отрицательное свойство древесины требует при устройстве древесных перегородок, полов и потолков применения звукоизолирующих материалов. Звукопроводность древесины и ее способность резонировать (усиливать звуки без искажения тока) широко используется при изготовлении музыкальных инструментов. Повышенная влажность древесины понижает ее звукопроводность.

7 Электропроводность. Электропроводность древесины характеризуется ее сопротивлением прохождению электрического тока. Электропроводность древесины зависит от породы, температуры, направления волокон и влажности. Электропроводность сухой древесины незначительна, это позволяет применять ее в качестве изоляционного материала. При увеличении влажности в диапазоне от 0 до 30 % электрическое сопротивление падает в миллионы раз, а при увеличении влажности свыше 30 % - в десятки раз. Электрическое сопротивление древесины вдоль волокон меньше в несколько раз, чем поперек волокон, повышение температуры древесины приводит к уменьшению ее сопротивления примерно в два раза.

8 Свойства древесины, проявляющиеся под воздействием электромагнитных излучений. Поверхностные зоны древесины могут эффективно прогреваться с помощью невидимых инфракрасных лучей. Значительно глубже - до (10-15) см - проникают в древесину лучи видимого света. По характеру отражения световых лучей можно оценивать наличие видимых пороков древесины. Световое лазерное излучение прожигает древесину и в последнее время успешно используется для выжигания деталей сложной конфигурации. Ультрафиолетовые лучи проникают гораздо хуже в древесину, но вызывают свечение - люминесценцию, которое может быть использовано для определения качества древесины. Рентгеновские лучи используются для определения особенностей тонкого строения древесины, выявления скрытых пороков и в других случаях. Из ядерных излучений можно отметить бета-излучения, которые используются при денсиметрии растущего дерева. Гораздо шире могут применяться гамма-излучения, которые глубже проникают в древесину и используются при определении её плотности, обнаружении гнилей в рудничной стойке и конструкциях.

1.4 Механические свойства

Механические свойства характеризуют способность древесины сопротивляться воздействию внешних сил (нагрузок). По характеру действия сил различают нагрузки статические, динамические, вибрационные и долговременные. Статическими называют нагрузки, возрастающие медленно и плавно. Динамические, или ударные, нагрузки действуют на тело мгновенно и в полную силу. Вибрационными называют нагрузки, у которых меняются и величина, и направление, Долговременные нагрузки действуют в течение очень продолжительного времени. Под действием внешних сил в древесине нарушается связь между отдельными ее частями и изменяется форма. Из-за сопротивления древесины внешним нагрузкам в древесине возникают внутренние силы. К механическим свойствам древесины относятся прочность, твердость, деформативность, ударная вязкость.

1 Прочность. Прочностью называется способность древесины сопротивляться раздражению под действием механических нагрузок. Прочность древесины зависит от направления действующих нагрузок, породы. Она характеризуется пределом прочности – напряжением, при котором разрушается образец. Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении связанной влаги прочность древесины уменьшается (особенно при влажности (20-25) %. Дальнейшее повышение влажности за предел гигроскопичности (30 %) не оказывает влияния на показатели прочности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок. Поэтому при проведении испытаний древесины придерживается заданной скорости нагружения на каждый вид испытания. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Предел прочности при растяжении. Средняя величина придела прочности при растяжении вдоль волокон для всех пород составляет 130 МПа. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности. Прочность древесины при растяжении поперек волокон очень мала и в среднем составляет 1/20 предела прочности при растяжении вдоль волокон, то есть 6,5 МПа. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперек волокон. Прочность древесины поперек волокон имеет значение при разработке режимов резания и режимов сушки древесины. Предел прочности при сжатии. Различают сжатие вдоль и поперек волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении. Разрушение при сжатии начинается с продольного изгиба отдельных волокон; во влажных образцах и образцах из мягких и вязких пород оно проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твердой древесине вызывает сдвиг одной части образца относительно другой. Прочность древесины при сжатии поперек волокон ниже, чем вдоль волокон, примерно в восемь раз. При сжатии поперек волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушения груза. Древесину испытывают на сжатие поперек волокон в радиальном и тангенциальном направлениях. Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние – растяжение вдоль волокон. Примерно по середине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. При изгибе в два раза больше предела прочности при сжатии вдоль волокон. Прочность древесины при сдвиге. Внешние силы вызывающие перемещение одной части детали по отношению к другой, называются сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперек волокон и перерезание. Прочность при скалывании вдоль волокон составляет 1/5 прочности при сжатии вдоль волокон. Предел прочности при скалывании поперек волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при скалывании поперек волокон в четыре раза выше прочности при скалывании вдоль волокон. Сопротивление древесины скалыванию. Раскалываемостью называется способность древесины под действием клина разделяться на части вдоль волокон. Раскалывание древесины по действию силы и характеру разрушения напоминает растяжение поперек волокон, которое в этом случае является внецентренным, то есть результатом действия растяжения и изгиба. Растяжение может проходить по радиальной и тангенциальной плоскостям. Сопротивление по радиальной плоскости у древесины лиственных пород меньше, чем по тангенциальной. Это объясняется влиянием сердцевинных лучей. У хвойных пород, наоборот, скалывание по тангенциальной плоскости меньше, чем по радиальной. При тангенциальном раскалывании у хвойных пород разрушение происходит по ранней древесине, прочность которой значительно меньше прочности поздней древесины.

2 Твердость. Твердостью называется способность древесины сопротивляться внедрению в нее более твердых тел. Твердость торцовой поверхность выше тангенциальной и радиальной на 30 % у лиственных породи на 40 % - у хвойных. На величину твердости оказывает влияние влажность древесины. При изменении влажности на 1 % торцовая твердость изменяется на 3 %, а тангенциальная и радиальная - на 2 %. По степени твердости все древесные породы при 12 % - ной влажности можно разделить на три группы:

А) мягкие (торцовая твердость 38,6 Мпа и менее) - сосна, ель, кедр, пихта, тополь, липа, осина, ольха;

 Б) твердые (торцовая твердость от 338,6 до 82,5 МПа) - лиственница сибирская, береза, бук, вяз, ильм, карагач, клен, яблоня, ясень;

В) очень твердые (торцовая твердость более 82,5 МПа) - акация белая, береза железная, граб, кизил, самшит.

Твердость древесины имеет существенное значение при обработке ее режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

3 Износостойкость. Износостойкость - способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

4 Способность удерживать крепления. Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.

5 Способность гнуться. Технологическая операция гнутья древесины основана на её способности сравнительно легко деформироваться при действии избегающих усилий. Способность гнуться выше у кольцесосудистых пород - дуба, ясеня и других, а из рассеянно-сосудистых – бука. Хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.


Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.