рефераты бесплатно
 

МЕНЮ


Курсовая работа: Реактивні двигуни

Очевидно, що якщо в камері буде мати місце газоутворення, що компенсує витрату газу через сопло, то реактивна сила не буде слабшати в міру витікання газів і може змусити камеру і літальний апарат, зв'язаний з нею, переміщатися з великою швидкістю на величезні відстані. Така камера із соплом є прообразом сучасного реактивного двигуна.

Варто розрізняти два принципово різних типи літальних апаратів і реактивних двигунів, що приводять їх у рух; один з їх пристосований для польотів тільки в повітряному просторі, другий не має потреби в повітряному середовищі для свого польоту.

Поле літального апарата (літака) у повітряному просторі відбувається за законами аеродинаміки. Сила опору Q, що впливає на крило літака при його польоті в повітрі, може бути розкладена на дві складові: вертикальні сили А, що називається піднімальною силою, і горизонтальну силу W, називану лобовим опором. Піднімальна сила виникає тому, що тиск під крилом завжди більше, ніж над крилом, і останнє як би спирається на повітря. При горизонтальному польоті піднімальна сила дорівнює вазі літака. Піднімальна сила є корисної, тому що вона підтримує літак у повітрі, і чим вона більше, тім більше може бути польотна ваги літака. Лобовий опір визначається опором повітря польоту літака; при рівномірному горизонтальному польоті він дорівнює тязі двигуна.

Лобовий опір є шкідливим, тому що заважає польоту літака, і чим вsy більше, тим більшою повинна бути тяга двигуна.

Як джерело тяги звичайно служить ПРД, що повинний працювати протягом усіх години польоту; у ньому для спалювання пального (гасу) використовується кисень навколишнього повітря, засмоктуваного в двигун. Це дозволяє не возити необхідний запас окислювача на бортe літака, але зате обмежує область застосування повітряно-реактивного двигуна нижніми шарами атмосфери (висотами до 30 - 35 км), де повітря ще досить щільне і може забезпечити живлення двигуна необхідною кількістю кисню.

Однак літак із ПРД у повітряному середовищі не може літати з гіперзвуковими швидкостями, що перевищують швидкість звуку в багато разів, через такі причини:

1. Зі збільшенням швидкості польоту лобовий опір зростає настільки різко, що ПРД не може розвивати потрібну тягу в прийнятних конструктивних формах.

2. При великих швидкостях польоту кінетичне нагрівання частин літака (особливо передньої кромки крил) і двигуна від швидкого стиску повітря і тертя настільки великий, що порушується належна міцність конструкції.

3. Еволюції літака при великих швидкостях і прискореннях практично дуже утруднені, тому що приводять до великих динамічних навантажень на крило літака.

4. При великих швидкостях різко погіршуються умови роботи екіпажу через серйозні перешкоди, що виникають при водінні літаків з такими швидкостями, і негативного впливу великих прискорень на фізіологію людини.

Подальше істотне збільшення швидкостей може бути отримано лише при польоті літального апарата (ракети) у безповітряному просторі, що відбувається за законами балістики - науки про рух артилерійських снарядів і інших тіл при стрільбі. При відсутності сили земного тяжіння ракета, запущена в безповітряний простір, летіла б прямолінійно і рівномірно відповідно до першого закону Ньютона. Однак насправді дійсності, під впливом земного тяжіння, ракета систематично опускається і траєкторія її польоту перетворюється в параболу (рис.. 3). Спочатку швидкість польоту ракети поступово зменшується, досягаючи мінімального значення в найвищій точці траєкторії, а потім знову наростає, досягаючи максимального значення при падінні на Землю.

Така ракета називається балістичною (на відміну від крилатої), тому що траєкторія її польоту, за винятком ділянки, що проходиться ракетою з працюючим двигуном (так званої ділянки активного польоту), є траєкторією вільно кинутого тіла. Практично термін «балістична ракета» прищепився лише до великих ракет далекої дії.

Подивимося, які сили впливають на балістичну ракету в найпростішому випадку: коли поле відбувається в безповітряному середовищі (аеродинамічний опір дорівнює нулю), при виключеному двигуні (поле по інерції на так називаній ділянці пасивного польоту), при відсутності впливу органів керування. Тоді зовнішньою силою, що впливає на ракету, є тільки сила ваг Р. Крім того, діють дві сили інерції: відцентрова Іц, що зумовлюється криволінійністю траєкторії, і сила інерції Іт оскільки має місце тангенціальне прискорення ракети. На першій половині траєкторії рух уповільнений, тобто прискорення спрямоване в сторону, протилежну руху; тому напрямок сили інерції збігається напрямком руху. Відповідно до відомого в механіку принципу Даламбера, рівнодійна всіх зовнішніх сил і сил інерції винна бути дорівнює нулю, тобто в даному випадку всі три сили взаємно врівноважуються.

Джерелом тяги на ракеті звичайно є або рідинний ракетний двигун, або ракетний двигун на твердому паливі, що працюють короткочасно, створюючи лише початковий імпульс (подальший політ ракети відбувається по інерції). У РРД для спалювання пального (наприклад, гасу) використовують спеціальний окислювач (наприклад, азотну кислоту чи рідкий кисень), який також повинен бути на борту ракети. У РДТТ окислювач міститься в паливі. Це набагато збільшує вагу потрібного для РРД і РДТТ палива, проте дозволяє ракеті літати в безповітряному просторі. При цьому більшість проблем, пов'язаних з польотом літака з гіперзвуковими швидкостями в повітряному середовищі, усувається: лобового опору немає, кінетичне нагрівання майже зникає, міцність конструкції істотно зростає (немає крил), а екіпаж відсутній. Чим вище початкова швидкість ракети, тім більше дальність її польоту. При досягненні визначеної швидкості траєкторія польоту ракети перетвориться в окружність близьку до неї замкнуту криву, що облямовує земну кулю. У цьому випадку рух буде відбуватися з рівномірною швидкістю, і тому сила інерції Іт буде дорівнює нулю. Таким чином, на ракету, що летить по круговій орбіті, діють тільки дві сили - сила ваги і відцентрова сила, що взаємно врівноважуються (так званий стан невагомості) і не дозволяють супутнику ні упасти на Землю, ні полетіти в міжпланетний простір.

Ваги тіла дорівнює добутку його маси М на прискорення сили земного тяжіння g, тобто

Р = Мg

Відцентрова сила тіла рухається по круговій орбіті, дорівнює добутку його маси на відцентрове прискорення n1 2/R

Іц = М (n1 2/R)

де n1- швидкість польоту; R - радіус орбіти, що в першому наближенні можна вважати рівним радіусу земної кулі r. Тоді, дорівнюючи сили Р и Iц одержимо

g = n1 2/r

звідки необхідна швидкість супутника

n1 = √gr

Оскільки прискорення сили земного тяжіння g = 9,81 м/сек2 = 0,01 км/сек2, а радіус Землі r = 6400 км, то перша космічна швидкість виявляється рівною

n1 =√0, 01• 6400 = 8 км/сек

При подальшому збільшенні початкової швидкості траєкторія ракети буде приймати вусі більш витягнуту (еліптичну) форму, поки при досягненні нею другої космічної швидкості (так званої параболічної швидкості, чи, як її ще називають, швидкості утікання) ракета не піде в міжпланетний простір і не перетворитися в міжпланетний корабель, наприклад у супутника Сонця. Саме це відбулося з першою радянською космічною ракетою, що зайняла «своє» місце між Землею і Марсом (рис. 4) з періодом обертання навколо Сонця в 15 місяців. Чому ж дорівнює друга космічна швидкість?

У механіці доводиться, що робота, що витрачається тілом для того, щоб воно могло вийти з поля земного тяжіння, дорівнює Мgr. Отже, для того щоб ракета перетворилася в міжпланетний корабель, треба, щоб її живаючи сила перевищувала цю чи роботу, принаймні, була дорівнює їй.

Друга космічна швидкість на 40% більше першої космічної швидкості. Зараз, коли вже досягнуто другої космічної швидкості, стало можливим послати ракету на Місяць, а також вирішити задачу обльоту ракетою Місяця з фотографуванням тієї її сторони, яку ніколи не видно із Землі

Задача створення. місячної ракети ускладнюється тим, що вона повинна бути запущена дуже точно, для того щоб здійснилася намічена програма її польоту. Адже Місяць видно із Землі під кутом усього в 0,5 градуса Досить, наприклад, сказати, що відхилення швидкості місячної ракети від розрахункової не повинне перевищувати декількох метрів у секунду, а відхилення вектора швидкості від його розрахункового напрямку не повинне перевищувати 0,1 градуса. Крім того, необхідно дуже точно витримати момент старту ракети (старт другої радянської космічної ракети здійснено з відхиленням біля однієї секунди від заданого моменту часу).

Для досягнення найближчих до нас планет Марса і Венери потрібна початкова швидкість близько 14 км/сек. І, нарешті, для того щоб залишити сонячну систему, тіло повинне володіти третьою космічною швидкістю (так називаною гіперболічною швидкістю), рівної 16,6 км/сек.

Якими властивостями повинна володіти ракета, що летить з космічною швидкістю, і в чому полягають основні технічні труднощі одержання таких швидкостей?

Відповідь на це питання вперше в історії давши видатний діяч науки Костянтин Едуардович Ціолковський (1857- 1935). У своїй знаменитій статті «Дослідження світових просторів реактивними приладами», опублікованої в 1903 році, К.Е. Ціолковський виводить рівняння, назване згодом рівнянням Ціолковського, для максимальної швидкості ракети про посла використовування всього палива (без обліку аеродинамічного опору і сили земного тяжіння), що має вид

v= W In(Рк + Рт / Рк)

У цьому рівнянні - швидкість витікання реактивного струменя; Рк- вага конструкції ракети; Рт - початкова вага палива; ln - знак натурального логарифма.

Як видно з формули Ціолковського, швидкість ракети тім більше, чим більше швидкість витікання реактивного струменя і чим менше відношення (Рк + Рт / Рк) (яку часто називається числом Ціолковського і позначається через μ). Якщо розділити чисельник і знаменник у числі Ціолковського на Рк те будемо мати

μ= 1/ (1 + (Рт / Рк))

Таким чином, для того щоб мати мінімальне число Ціолковського, треба мати максимальне відношення (Рт / Рк) тобто мінімальна ваги конструкції, що приходитися на одиницю ваги палива.

Подивимося, які технічні можливості одержання максимальних швидкостей реактивного струменя і мінімальних чисел Ціолковського.

Як було зазначено вище, швидкість реактивного струменя тім більше, чим вище початкові температура і тиск газу. Якщо взяти такі високі параметри, як температуру 40000 і тиск 100 ат, те швидкість реактивного струменя виходить порядку 2500 м/сек. Треба сказати, що подальші можливості збільшення цієї швидкості обмеження, тому що максимальна температура при хімічній реакції не перевищує приблизно 55000.

Число Ціолковського у відомих ракетах (наприклад V- 2) дорівнює 0,3. Маючи у виді можливості їхнього конструктивного удосконалення, приймемо мінімально можливу величину µ дорівнює 0,1. Тоді одержимо максимальну швидкість польоту ракети

v=2,51n (1/0.1) =5,75 км/сек

що навіть без обліку аеродинамічного опору і сили земного тяжіння істотно менше першої космічної швидкості. Де ж вихід з цього положення? Він був зазначений також Ціолковським і складається в застосуванні складених ракет, що використовуються в даний час для запуску штучних супутників Землі і космічних ракет. Ідея складених ракет полягає в тому, щоб у міру вигоряння визначеної частини палива скидати порожні паливні баки і відповідну частину конструкції ракети. Це звільняє ракету від «мертвого вантажу» і полегшує її подальше прискорення.

Для багатоступеневих ракет з числом ступеней n формула Ціолковського має вигляд

v = W ln (1/μп) = W ln (1/μ)

тобто кінцева швидкість ракети зростає пропорційно числу ступеней. При тих же даних швидкість триступеневої ракети виявиться втроє більше швидкості одноступеневої і дорівнює - р 1 v=2,5 3ln - =17,25 км/сек. З урахуванням аеродинамічного опору і сили земного тяжіння кінцева швидкість цієї ракети буде дорівнює приблизно 15 км/сек, тобто перевищить другу космічну швидкість. Таким чином, застосування багатоступеневих ракет є чудовим способом проникнення людини в космос. Зрозуміло, що створення таких ракет і вивід їх на орбіту є складною технічною задачею, що по плечу лише країнам з дуже високим рівнем розвитку науки і промисловості, у тому числі в області радіотехніки, телекерування, обчислювальної техніки, металургії, хімії, напівпровідникової техніки, теплотехніки, автоматики, радіофізики. Однак і при цих умовах надмірне збільшення числа ступіней і зменшення числа Ціолковського практично неможливо.

Який же шлях подальшого збільшення швидкості ракети?

Очевидно, треба збільшувати швидкість витікання реактивного струменя. Але як це зробити ?

Перш ніж відповісти на це питання, розглянемо сучасні реактивні двигуни.


3. Повітряно-реактивні двигуни: принцип роботи

Розвиток реактивної авіації виявилося можливим завдяки створенню могутніх газотурбінних двигунів.

Сучасний авіаційний газотурбінний двигун в основному складається з вхідного прибудую, осьового компресора, камери згоряння, газової турбіни, форсажної камери і реактивного сопла (рис. 3).

Рис. 3 - Схема газотурбінного двигуна: 1 - вхідний пристрій; 2 - компресор; 8 - камера згоряння; 4 - газова турбіна; 5 - форсажна камера; 6 - реактивне сопло

Повітря засмоктується у вхідний пристрій, де швидкість його руху перетворюється в тиск. Дальше це повітря надходить в багатоступінчастий осьовий компресор, що приводитися в обертання газовою турбіною. У компресорі він поступово стискується і потім надходить в камеру згоряння. Вона звичайно являє собою циліндр, усередині якого розташовані жарові труби, постачені свічами і форсунками. Форсунки розпорошують пальне (авіаційний гас) у повітряному потоці, а електричні свічі запалюють суміш, що утворилася. Згодом свічі виключаються, тому що подальше запалювання суміші викликається високою температурою газів усередині жарової труби.

Рух повітря в камері протікає в такий спосіб. У жарову трубу, де відбувається процес горіння при температурах порядку 2000 - 22000, спочатку надходить лише менша частина повітря. Велика частина повітря обтікає жарові сурми зовні, охолоджуючи їхні гарячі стінки, що необхідно робити, незважаючи на те, що ці труби виготовляються з високолегованих сталей. Дальше це повітря через велике число отворів також надходити в жарову трубу, де в так називаній вторинній зоні він змішується з газом у результаті чого утвориться газоповітряна суміш з температурою 800 - 9000.

Вибір такого процесу горіння в камері пояснюється тим, що високотемпературний газ не можна направляти безпосередньо в турбіну, тому що при цьому негайно прогорять лопатки. З іншого боку, небажано здійснювати процес горіння при низьких температурах через велику неповноту згоряння палива, що буде мати місце в цьому випадку, і нестійкості процесу згоряння.

З камери згоряння газ надходить в газову турбіну (у даному випадку двоступінчасту). Розширюючи в турбіні, газ змушує її обертатися, причому на валу її розвивається потужність, необхідна для обертання компресора. Робочі лопатки турбіни рухаються з великою коловою швидкістю порядку 300-400 м/сек і мають температуру не менш 7000С. Тому вони повинні бути винятково міцними. Це обставина довгий година затримувала розвиток газових турбін, поки не були знайдені спеціальні хромонікелеві сплави, що володіють достатньою міцністю навіть при температурі червоного світіння. Лопатки, виготовлені з цього сплаву, випробуючи величезні механічні напруги в розпеченому стані, не повинні розтягуватися ні на одні міліметрів, тому що в противному випадку смороду зачеплять за корпус турбіни, що приведе до негайного виходу двигуна з ладу. Тільки при дуже високій культурі металургії удалося забезпечити належну міцність турбіни в досить важких умовах її роботи.

З газової турбіни газ надходити у форсажну камеру, що представляє собою трубу з форсунками для подачі пального і системою стабілізаторів. Призначення форсажних камер полягає в тому, щоб подати в двигун додаткову кількість пального, підняти температуру газу і збільшити тягу двигуна. Спалювання нової порції палива в потоці газі виявляється можливим у зв'язку з тим, що в газі міститься кисень повітря, що не приймав участі в процесі згоряння в основній камері. Таким чином, наявність форсажної камери дозволяє збільшити температуру газу понад ту величину, що може бути допущена для лопаток газової турбіни, але при цьому різко збільшується витрата палива. Тому звичайно форсажна камера працює не цілий час, а включається лише тоді, коли потрібна велика тяга двигуна (наприклад, для злету дуже важкого літака чи здійснення маневру літака в польоті).

Нарешті, з форсажної камери газ надходить в реактивне сопло, у якому відбувається перетворення потенційної енергії газу в кінетичну. Газ з великою швидкістю залишає двигун, створюючи тягу в протилежному напрямку.

Запуск двигуна виробляється за допомогою турбостартера, що являє собою маленький газотурбінний двигун. Керування і регулювання його виробляються за допомогою спеціальної автоматики.

Великі сучасні газотурбінні двигуни мають витрати повітря порядку 100-200 кг/сек і тяга, що розвивається ними, досягає 10-15 т. Потужність N авіаційної силової установки зв'язана з її тягою R залежністю

N = Rv / 75

де v - швидкість польоту в м/сек. Виходить, при швидкості польоту, рівної, припустимо, подвійної швидкості звуку, потужність двигуна з тягою 15 т виявиться рівної приблизно 130 тис. л. с. Якщо чотири таких двигуни поставити на надзвуковий важкий літак, то потужність силової установки літака перевищить півмільойона кінських сил! Така енергооснащеність сучасних важких літаків.

Величезна тяга авіаційних двигунів, як це було зазначено вище, витрачається на подолання лобового опору літака. Для простоти розглянемо літак з нескінченно довгими крилами, чи, як кажуть, із крилами нескінченного розмаху. Опір польоту з дозвуковими швидкостями крила нескінченного розмаху визначається так називаним профільним опором, що складається з опору тертя й опору тиску. Будь-яку тверде тіло, що рухається в грузлому середовищу, «обростає» тонким шаром часток цього середовища, що гальмуються на поверхні обтічного тіла. Ця ”панчоха”, надягнута на поверхню тіла, називається прикордонним шаром. Тертя між частками прикордонного шару і поверхнею тіла, а також тертя часток між собою є тією шкідливою силою, на подолання якої приходитися затрачати частина тяги двигуна. Прикордонний шар звичайно складається з двох частин - ламінарного прикордонного шару на передній частині крила, у якому частки рухаються більш-менш впорядкованого в одному напрямку, і турбулентного прикордонного шару, у якому частки рухаються хаотично. За задньою кромкою крила обидва прикордонних шари з верхньої і нижньої сторін крила сходять з нього у вигляді вихрової завіси.

Підгальмовування частинок на поверхні тіла приводити до його нагрівання, причому у більшому ступені, чим більше була швидкість часток. Якщо позначити через t температуру потоку, а через v - швидкість потоку в м/сек, те температура загальмованого потоку (прикордонного шару) буде дорівнювати

t*= t + (v2/2000)

Звідси видно, що температура t* дуже швидко зростає зі збільшенням швидкості потоку. Так, наприклад, якщо в прикордонному шарі потоку, що тече зі звуковою швидкістю, температура зростає на 550, то при десятикратній швидкість звуку це збільшення температури складі 55000. Правда, через теплове випромінювання від гарячого тіла у відносно холодне навколишнє середовище температура тіла буде істотно менше, проте проблема так званого аеродинамічного нагрівання літального апарату є однією із самих гострих проблем польоту з великими надзвуковими швидкостями.

Забігаючи трохи вперед, зазначимо, що оскільки найбільше нагрівання відбувається в передній частині тіла, що летить, то ракети часто забезпечують наконечником з термостійкого матеріалу. На щастя для космічних ракет, при зльоті смороді залишають самі щільні шари атмосфери з малими швидкостями, що охороняє їх від згоряння; однак при поверненні ракети влітають в атмосферу з величезними швидкостями і згоряють, на зразок комет і метеоритів, що здаються нам «падаючими зірками».

Опір тиску визначається тим, що при русі тіла в середовищі тиск на його поверхні неоднаково, наприклад, на передній частині тіла воно завжди більше, ніж на кормовій частині, де спостерігається навіть розрідження (так називаний донний ефект). Рівнодіюча всіх сил тиску, що впливають на поверхню тіла, виявляється спрямованої проти рухові, тому на її подолання також приходитися затрачати частина тяги двигуна. Чим більш зручно обтікаючу форму має літальний апарат, тим менше опір тиску.

При надзвуковому польоті додатково виникає так називаний хвильовий опір. Суть його полягає в наступному. Тіло, що рухається в середовищі, стискає це середовище в області, що безпосередньо прилягає до поверхні тіла. При польоті з дозвуковими швидкостями такого стиску не відбувається, тому що частки встигають «розбігтися» (слабкі збурення в середовищі поширюються зі швидкістю звуку, яка у даному випадку перевищує швидкість польоту). При надзвуковій швидкості польоту частки не встигають «втекти» і перед крилом літака виникає вузька криволінійна область стиснутого газу, що називається ударною хвилею.

Найбільшій інтенсивності та швидкості переміщення, рівної надзвукової швидкості літака, ударна хвиля досягає в середній своїй частині напроти крайки крила, де вона являє собою так називаний прямий стрибок ущільнення; далі ударна хвиля слабшає, переходячи в так називані косі стрибки ущільнення, і, нарешті, на краях переходить в слабкі хвилі збурення, що поширюються зі швидкістю звуку. Цим визначається та обставина, що мі «чуємо» надзвуковий літак після того, як побачимо його. При польоті надзвукового літака на малій висоті інтенсивна частина ударної хвилі може дійти до Землі - тоді вона створює враження гарматного пострілу і здатна причинити серйозних руйнувань. Тому польоти надзвукових літаків на малих висотах не дозволяються.

Незважаючи на ряд мір, що застосовуються для ослаблення ударних хвиль, наприклад використання тонких стріловидних крил, на переміщення цих хвиль потрібно затрачати значну енергію. Крім того, при наявності ударних хвиль погіршується обтікання крила. Усе це разом дає хвильовий опір, для подолання якого потрібна додаткова тяга двигуна. Тому надзвукові і тім більше гіперзвукові літаки вимагають дуже потужних двигунів. При гіперзвукових швидкостях польоту гальмування потоку, що набігає, уже настільки велике, що компресор стає непотрібним.

Двигун, у якому здійснюється гальмування потоку, що набігає, спалювання палива в камері і розширення газу в соплі, називається прямоточним повітряно-реактивним двигуном. Він значно простіший газотурбінного двигуна, оскільки в ньому відсутні обертові частини (турбокомпресор). Однак великим недоліком літака з прямоточним двигуном є відсутність автономного старту. При зльоті, коли ще немає потоку, що набігає, тяга прямоточного двигуна дорівнює нулю, тому такий літак повинний бути обов'язково оснащений спеціальним стартовим двигуном, що розганяє літак до такої швидкості, при якій робота прямоточного двигуна стає вже ефективною.

Великі витрати палива в сучасних потужних авіаційних двигунах змушують брати на борт надзвукового важкого літака десятки і навіть сотні тонн палива.

Шлях подальшого збільшення дальності полоту без збільшення запасу палива полягає в тому, щоб застосовувати нові палива з великою хімічною енергією, чи, як кажуть, з великою теплотворною здатністю.

У даний час вважаються перспективними висококалорійні хімічні палива на основі бороводневих з'єднань (боранів). Найбільш розповсюдженим видом такого палива є пентаборан, що представляє собою летку токсичну рідина з теплотворною здатністю порядку 16000 ккал/кг, тобто перевищує теплотворну здатність гасу більш ніж у півтора рази. Це дозволяє збільшити дальність польоту літака на 30-40%. Однак при застосуванні боранів зустрічаються великі труднощі, які полягають в тому, що в продуктах його згоряння є окис бору, що в гарячому виді являє собою густу грузлу рідину, що забруднює і роз'їдає проточну частину двигуна, зокрема турбінні лопатки. Тому в першу чергу застосування боранів варто очікувати в прямоточних двигунах і у форсажних камерах газотурбінних двигунів.

Крім цього недоліку, борани токсичні, дорогі і виробляються поки в малих кількостях. Тому вчені та конструктори шукають нові джерела енергії на літаку.

Необмеженого збільшення дальності польоту можна досягти, використовуючи атомну (внутрішньоядерну) енергію шляхом заміни камери згоряння атомним реактором. Атомний реактор працює в такий спосіб. У кожнім реакторі звичайно мається деяка кількість вільних, чи так званих блукаючих, нейтронів (нейтрон - позбавлена електричного заряду елементарна частка матерії, що входити до складу атомних ядер). Вільний нейтрон, завдяки відсутності електричного заряду, легко проникає в атомне ядро урану, з якого складається тепловиділяючий елемент реактора, і руйнує його з утворенням осколків ядра і декількох, так званих вторинних, нейтронів. Осколки, що розлітаються з великими швидкостями, зіштовхуються з навколишніми ядрами, збільшують швидкість їхнього хаотичного теплового рухові і розігрівають середовище, у якій відбувається процес розподілу ядер. Утворене тепло приділяється стисненим повітрям, що проходить через реактор.

Але як же підтримувати реакцію розщеплення, що почалася в матеріалі, що поділяється? Цю місію виконують вторинні нейтрони. Проникаючи з великою швидкістю в шари сповільнювача (у якості якого можуть служити різні легкі речовини, наприклад важка вода, графіт, берилій, захоплення якими нейтронів мало ймовірний), швидкі нейтрони втрачають у ньому свою кінетичну енергію і виходять звідти у виді повільних нейтронів. Потім вони попадають у сусідні уранові блоки, де знову захоплюються атомами урану, викликаючи їхній розподіл, і т.д. Якщо число вторинних нейтронів, що утворяться при розпаді, дорівнює числу нейтронів, загублених і захоплених ядрами матеріалу, що розщеплюється, то процес розподілу буде підтримуватися автоматично. Такий стан реактора називається критичним, а маса атомного пального, при якій досягається критичний стан. - критичною масою. Режим роботи звичайного двигуна змінюється шляхом зміни подачі пального в камеру згоряння. У реакторі маса атомного пального постійна. Як викликати зміну режиму його роботи? Це досягається шляхом використання спеціальних регулюючих стрижнів, виготовлених з матеріалів, що добре поглинають нейтрони. Всуваючи чи висуваючи регулюючі стрижні, можна збільшувати чи зменшувати кількість нейтронів, що поглинаються, і в такий спосіб регулювати теплову потужність реактора (рис. 4).

Рис. 4 - Схема атомного реактора: 1 - утримуюча плита; 2 - сповільнювач; 3 - відбивач; 4 - регулюючий стрижень; 5 - зовнішній кожух; б - тепловиділяючий елемент


Здавалося б, ядерні двигуни, що вимагають незначного запасу атомного пального, можуть претендувати на швидкий і широкий розвиток. Однак цього поки не сталося через великі ускладнення, що виникають у зв'язку з необхідністю надійно захищати екіпаж літака від шкідливого впливу радіоактивного випромінювання. Необхідні захисні засоби настільки обважнюють рухову установку, що вона стає непридатної для постановки на літак.

3.1 Цикли реактивних двигунів

Реактивні двигуни поділяють на повітряно-реактивні, у яких як окислювач використовується кисень атмосферного повітря, і ракетні, що не використовують атмосферне повітря. Термодинамічні процеси, що складають цикл повітряно-реактивного двигуна, здійснюються в декількох елементах.

У двигунах з дозвуковими швидкостями польоту адіабатний стиск повітря відбувається спочатку в дифузорі під впливом потоку повітря, що набігає, потім у компресорі. Стиснутий до тиску р повітря подається в камери згоряння, де при постійному тиску до нього підводиться питома кількість теплоти q. З камер згоряння газ - робоче тіло - подається на лопатки газової турбіни, де частково розширюється без теплообміну з зовнішнім середовищем. При цьому турбіна робить позитивну роботу, чисельно рівну площі у vp-діаграмі, що витрачається компресором на стиск повітря. Подальше адіабатне розширення газів відбувається в реактивному соплі до тиску зовнішнього середовища. Гарячі випускні гази після двигуна прохолоджуються при тиску зовнішнього середовища, віддаючи їй питома кількість теплоти q2. Порівняння термодинамічних циклів показує, що вони цілком збігаються.

Повітряно-реактивні двигуни, що відносяться до безкомпресорних, поділяють на прямоточні і пульсуючі. При великій швидкості поступального рухові двигуна повітря, потрапляючи в дифузор, гальмується, динамічний напір перетвориться в статичний тиск. Стиснутий у такий спосіб повітря в камері згоряння разом з паливом утворить гарячу суміш, продукти згоряння якої подаються в сопло. Тяга двигуна створюється прямою реакцією струменя, що випливає.

При надзвукових швидкостях польоту повітря попадає у вхідний канал двигуна з надзвуковою швидкістю. Для можливо більш повного перетворення швидкісного напору в тиск у надзвукових двигунах використовують дифузори складної форми з конічною голкою. Форма каналу, утворена дифузором і голкою, дозволяє знизити швидкість повітря і підвищити його тиск до рівня, необхідного для спалювання палива в камері згоряння.

В ідеальному циклі прямоточного повітряно-реактивного двигуна процес стиску повітря є адіабатним. Підведення теплоти qi відбувається в камері згоряння при постійному тиску р, після чого в реактивному соплі виконується адіабатне розширення до тиску зовнішнього середовища. Процес віддачі теплоти від робочого тіла зовнішньому середовищу - ізобарний. Таким чином, діаграма циклу прямоточного повітряно-реактивного двигуна за формою збігається з діаграмою циклу турбореактивного двигуна.

У безкомпресорному пульсуючому повітряно-реактивному двигуні повітря стискується в дифузорі адіабатно, згоряння робочої суміші здійснюється в ізольованому обсязі (ізохорний процес ). Продукти згоряння при русі в конфузоре і випускній трубі розширюються адіабатно до тиску зовнішнього середовища потім відбувається ізобарний процес охолодження - віддача теплоти від робочого тіла зовнішньому середовищу.

Термічний ККД циклу пульсуючого повітряно-реактивного двигуна з ростом теплового навантаження двигуна (збільшення кількості підведеної теплоти q,) збільшується як термічний ККД, так і робота циклу.

У камеру згоряння рідинного ракетного двигуна спеціальними насосами подаються рідке паливо і рідкий окислювач. У камері згоряння паливо згоряє, а, що утворилися при цьому газоподібні продукти згоряння при русі по соплу розширюються по адіабаті. При роботі ракетного двигуна на розрахунковому режимі тиск газів на зрізі сопла виявляється рівним тиску зовнішнього середовища.

Термічний ККД двигуна можна розрахувати у виді відносини корисної питомої роботи

L=і1- і2

до питомої кількості теплоти q1. Тому, що процес адіабатного розширення є одночасно і процесом адіабатного витікання робочого тіла з камери згоряння в зовнішнє середовище. Відповідно до цього є відповідна формула

lд = 0,5w2

де w - швидкість витікання робочого тіла із сопла.

Таким чином, термічний ККД двигуна можна представити у виді
η=0,5w2/ q1

У ракетних двигунах твердого палива шашки з паливом знаходяться безпосередньо в камері згоряння. Пальне й окислювач, що містяться у твердому паливі, до запалення не реагують між собою. При запаленні твердого палива (при пуску двигуна) утворяться гази (продукти згоряння), що, розширюючись по адіабаті викидаються через сопло з великою швидкістю і створюють реактивну тягу.


3.2 Застосування реактивних двигунів у народному господарстві

У народному господарстві найбільше застосування знаходять як нові, так і встановлений гарантійний ресурс, що відробили в повітрі, авіаційні ГТД (АГТД). АГТД є найбільш зробленими в конструктивному відношенні двигунами, що працюють з найбільш високою економічністю. Вони компактні, легкі, мають мале металоємність і обсяг, високу маневреність. Завдяки серійному випуску АГТД мають питому собівартість значно меншу, ніж наприклад, стаціонарні ГТУ.

Розглянемо деякі випадки використання АГТД у різних галузях промисловості, в енергетику, на транспорті. АГТД входять до складу пікових і резервних енергетичних установок на електростанціях. Тому, що ресурс роботи звичайних пікових установок значно більше (до 10 - 20 тис. год) терміну служби встановлюваних АГТД, в. плин цього терміну АГТД приходитися змінювати 2 чи 3 рази. При створенні енергетичних установок використовують як ТРД, так і ТВД. Конкретний тип АГТД вибирають у першу чергу в залежності від необхідної потужності і призначення станції. Деякі типи ТВД можна застосовувати безпосередньо для приводу электрогенератора. У цьому випадку планетарний редуктор, через який у вихідному ТВД потужність передається на гвинт (гвинти), заміняють більш простимо редуктором, що знижує частоту обертання до 3000 об/хв. Якщо два чи трохи ТВД установлюються для приводу одного електрогенератора, то вони, працюючи паралельно, передають потужність через один редуктор.

Могутні енергоустановки створюються в основному на базі ТРД. У них ТРД звичайно служити газотурбогенератором (ГТГ). Потенційна енергія газів, що відробили, використовується для приводу силової турбіни, що приводить в рух електрогенератор. Реактивне сопло двигуна заміняється перехідним патрубком і силовою турбіною.

Енергоустановки з декількома ТВД чи ТРД працюють з високою паливною економічністю на часткових навантаженнях. Застосування АГТД у складі пікових і резервних енергоустановок особливо доцільно через винятково швидкий їхній вихід на робочий режим (навіть з холодного стану не більш, ніж через 3 - 5 хв), причому легко забезпечується автоматичне включення енергоустановок у роботу при падінні частоти струму в електричній мережі.

Об'єднанням декількох ГТД можна створювати могутні енергоустановки для резервування потужностей великих електростанцій, а також для покриття найбільш гострої пікової частини навантаження. З зббільшенням одиничних потужностей істотно знижується питома вартість електростанції. Енергоустановки з що відробили літний ресурс АГТД (наприклад, двигунами АИ-20) застосовуються також у силових установках пересувних електростанцій потужністю 1600 і 2000 кВт. У стаціонарних умовах АГТД можуть використовуватися як привід бурильних установок, що перекачують агрегатів на газо- і нафтопроводах. Економічна доцільність застосування АГТД визначається можливістю його роботи на паливі, що перекачуються; такі установки легко транспортуються, монтуються і демонтуються, керуються автоматично і дистанційно, не вимагають громіздких фундаментів і спеціальних приміщень. Прикладом використання перетворених авіаційних двигунів у якості газоперекачуючих агрегатів (ГПА) є агрегат ГПА-Ц-6,3 потужністю 6,3 Мвт, двигуном у якому служить газотурбінна установка НК-12СТ, перероблена з АГТД типу НК-12. Організовано серійне виробництво цих ГПА. Вони виявилися дуже надійними в експлуатації; економічний ефект від уведення компресорних станцій із ГПА-Ц-6,3.

На базі авіаційних двигунів розробляються ГПА потужністю 25 Мвт. АГТД знаходять застосування також у суднових установках. Для ефективної передачі потужності АГТД на гвинт передбачається компонування з вільною силовою турбіною гвинта, а турбокомпресорний блок ТРД використовується як генератор газу. Потужність від силової турбіни гвинту передається через редуктор. Іноді для цих цілей в одновального ТВД виділяють останні (одну чи дві) ступіні турбіни у кінематично не зв'язану з турбокомпресорним блоком вільну турбіну для приводу гвинта.

Двокаскадний ТРДД також може бути перероблений шляхом виділення частини ступіней турбіни низького тиску для створення додаткової вільної турбіни гвинта. У деяких суднових установках турбокомпресорний блок ТРД використовується як генератор стиснутого повітря для ГТУ з розділеним потоком повітря.

При призначенні АГТД у якості суднової силової установки, крім змін у схемі двигуна, необхідно також передбачити міри, що забезпечують задовільну роботу ГТД в умовах рухові судна: установку сепараторів вологи і фільтрів при вході в двигун, застосування покрить для деталей компресора і пристроїв для періодичного чищення компресора від відкладень, а також посилення підшипникових вузлів. Для зниження рівня шуму і теплового випромінювання турбокомпресорний блок двигуна іноді укладають у звуконепроникний кожух, що складається з частин. Кожух покривають зсередини звукоізоляційним матеріалом і забезпечують вентиляцію камери між турбокомпресорним блоком і кожухом для чого через патрубки підводиться і приділяється охолодний повітря. Крім того, у вхідному повітряному каналі й у випускній системі двигуна встановлюють спеціальні шумоглушники, облицьовують стіни машинного відділення звуковбирними матеріалами, звукоізолюють механізми за допомогою кожухів і перегородок і застосовують амортизатори, що зменшують передачу вібрацій на корпус судна.

Позитивні якості перетворених з авіаційних ТРД, ТВД і ТРДД двигунів особливо яскраво виявляються при установці їх на судах на підвідних крилах і на повітряній подушці, навіть за умови, що моторесурс цих двигунів внаслідок зміни умов роботи знижується до 1800-2500 г замість 3000-4000 г при роботі на літаках

Головну силову установку пасажирського судна на підвідних крилах «Буревісник» складають два двигуни АИ-20А потужністю по 2000 кВт, що приводять двоступінчасті водометні рушії. Застосування водометного рушія дозволило цілком зберегти конструкцію серійного ТВД, за винятком системи автоматичного регулювання, що була трохи змінена. Під час пуску двигуна повітряна заслінка повітрозабірника відкривається, і водомет разом з водою забирає повітря, забезпечуючи досить легке розкручування ротора. Двигун АИ-20А було встановлено також на судні на повітряній подушці «Сормович».

Перетворені АГТД застосовуються для приводу електрогенератора на пересувних електростанціях і як силові установки швидкісних пасажирських потягів (турбопоїздів). Порівняння турбопоїздів і тепловозної тяги в пасажирському залізничному транспорті показало, що турбопоїзда доцільно застосовувати при швидкостях рухові більш 100-120 км/ч.

Космічні дослідження вимагають створення для перших ступеней ракет РРД і РДТТ із тягою в кілька сотень і тисяч кілоньютонів і одночасно з цим різних гальмових, коригувальних ракетних двигунів і, нарешті, мікродвигунів.


Висновок

В даній курсовій роботі описані такі питання, як класифікація реактивних двигунів, будову та прнцип дії та цикли газотурбінного та турбореактивного двигунів. Також описана будова найбільш використовуваних у народному господарстві, а саме у авіації, повітряно-реактивних двигунів.

Прогрес у вивченні та розробці нових реактивних двигунів дають змогу використовувати реакивні двигуни у народному господарстві, як у авіації, так і у енергетиці.Об'єднанням декількох ГТД можна створювати могутні енергоустановки для резервування потужностей великих електростанцій, а також для покриття найбільш гострої пікової частини навантаження. З збільшенням одиничних потужностей істотно знижується питома вартість електростанції. Енергоустановки з що відробили літний ресурс АГТД (наприклад, двигунами АИ-20) застосовуються також у силових установках пересувних електростанцій потужністю 1600 і 2000 кВт. У стаціонарних умовах АГТД можуть використовуватися як привід бурильних установок, що перекачують агрегатів на газо- і нафтопроводах. Вони виявилися дуже надійними в експлуатації; економічний ефект від уведення компресорних станцій із ГПА-Ц-6,3.


Література

1.  «Реактивні двигуни та великі швидкості», Л.П. Абіанц, М. 1978 р.

2.  «Теплотехніка», під ред. В.І. Крутова, М. 1986 р.

3.  «Загальна теплотехніка і теплові машини», Швець І.Т., Кіраковський І.Т. «Вища школа», 1977 р.


Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.