| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
МЕНЮ
| Курсовая работа: Расчет трехфазного асинхронного двигателя с короткозамкнутым ротором на мощность 45 киловаттСоставляющая коэффициента проводимости рассеяния статора, зависящая от насыщения:
Переменная часть коэффициента ротора:
Составляющая коэффициента проводимости рассеяния ротора, зависящая от насыщения:
Индуктивное сопротивление рассеяния двигателя, зависящее от насыщения:
Независящее от насыщения (Ом):
Ток ротора, соответствующий максимальному моменту, при закрытых овальных пазах:
Полное сопротивление схемы замещения:
сопротивление при бесконечном скольжении. Эквивалентное сопротивление схемы замещения при максимальном моменте:
Кратность максимального момента:
Критическое скольжение:
2.11 Начальный пусковой момент и пусковые токи Рассчитаем параметры схемы замещения двигателя при пуске, с учетом влияния вытеснения тока и насыщения магнитной цепи. Высота стержня клетки ротора:
Приведенная высота стержня ротора:
По графику на рисунке
9-23 [1] определяем коэффициент Расчетная глубина проникновения тока в стержень:
Ширина стержня на расчетной глубине проникновения тока:
Площадь поперечного сечения стержня при расчетной глубине проникновения тока:
Коэффициент вытеснения тока:
Активное сопротивление стержня клетки для пускового режима:
Активное сопротивление обмоткиротора приведенное к обмотке статора:
По графику на рисунке
9-23 [1] определяем коэффициент Коэффициент проводимости рассеяния паза ротора при пуске:
Коэффициент проводимости рассеяния обмотки ротора при пуске:
Индуктивное сопротивление рассеяния двигателя, зависящее от насыщения:
Независящее:
Активное сопротивление короткого замыкания при пуске:
Рассчитаем пусковой ток и момент. Ток ротора при пуске:
Полное сопротивление схемы замещения при пуске (с учетом эффекта вытеснения тока и насыщения путей потоков рассеяния):
Индуктивное сопротивление схемы замещения при пуске:
Активная составляющая тока статора при пуске:
Реактивная составляющая тока статора при пуске:
Фазный ток статора при пуске:
Кратность начального пускового тока:
Активное сопротивление ротора при пуске, приведенное к статору, при расчетной рабочей температуре и Г-образной схеме замещения:
Кратность начального пускового момента:
2.12 Расчет механической характеристики двигателя и зависимости пускового тока от скольжения Расчет механической характеристики в диапазоне скольжений от 0 до критического производим по формуле Клосса. Имея значения максимального и пускового моментов и значение момента при s=0.5, можно достаточно точно построить механическую характеристику в диапазоне скольжений от 0 до 1. Для того, чтобы определить значение момента при s=0.5 построим круговую диаграмму двигателя для данного скольжения, учитывая соответствующее уменьшение индуктивных сопротивлений (в отличии от номинального режима) и увеличения сопротивления r211. Построение диаграммы ведем по методу, изложенному в параграфе 14-12 [2]. Масштаб по току принимаем: СТ=1.5 А/мм; Тогда масштаб мощности:
Диаметр рабочего круга:
Расстояния GH, GF, GE соответственно: 200·ρ1=2.22мм 100r11/xk=23.5/1.46=16.1 мм 100rкп/xk= 0.58/1.46=39.7мм Проводим через точкуО и Е, О и А линии механических мощностей и электромагнитных моментов, соответственно. Отношение моментов будет равно отношению КК1/LL1. Отношение токов: O1K/O1L.
Рис.6. Круговая диаграмма двигателя при s=0.5 Таким образом, кратность моментов равна 1.6. Кривую тока строим по 4 точкам: s=0: Ixp/I1=0.36; s=0.023: I/I1=1.0; s=0.5: I/I1=4.7 (покруговойдиаграмме); s=1.0: Ixp/I1=5.3; Графики механической характеристики двигателя и зависимости тока от скольжения приведены в Приложении. 2.13 Тепловой и вентиляционный расчеты Проектируемый двигатель имеет изоляцию класса F. Тепловой расчет проводят для наиболее неблагоприятных условий работы – температуру обмоток принимаем 140 градусов. Соответственно коэффициент mT=1.48. Потери в обмотке статора при максимальной температуре:
Условная внутренняя поверхность охлаждения активной части статора:
Условный периметр поперечного сечения трапецеидального полузакрытого паза:
Условная поверхность охлаждения пазов:
Условная поверхность охлаждения лобовых частей:
Число ребер на станине 36, высота ребра 30мм. Условная поверхность охлаждения двигателя:
Удельный тепловой поток от потерь в активной части обмотки и от потерь в стали, отнесенных к внутренней поверхности охлаждения активной части статора:
Удельный тепловой поток от потерь в активной части обмотки, отнесенных к внутренней поверхности охлаждения пазов:
Удельный тепловой поток от потерь в лобовых частях обмотки, отнесенных к внутренней поверхности охлаждения пазов:
Окружная скорость ротора:
Превышение температуры внутренней поверхности активной части статора над температурой воздуха внутри машины:
Перепад температуры в изоляции паза и катушек из круглых проводов:
Превышение температуры наружной поверхности лобовых частей обмотки над температурой воздуха внутри двигателя:
Перепад температуры в изоляции лобовых частей катушек из круглых проводов:
Среднее превышение температуры обмотки над температурой воздуха внутри двигателя:
Потери в обмотке ротора, при максимальной допускаемой температуре:
Потери в двигателе со степенью защиты IP44, передаваемые воздуху внутри двигателя:
Среднее превышение температуры воздуха внутри двигателя над температурой наружного воздуха:
Среднее превышение температуры обмотки над температурой наружного воздуха:
Вентиляционный расчет двигателя. Наружный диаметр корпуса машины:
Коэффициент, учитывающий изменение теплоотдачи по длине корпуса двигателя:
Необходимый расход воздуха:
Расход воздуха, который может быть обеспечен наружным вентилятором:
Напор воздуха, развиваемый наружным вентилятором:
2.14 Масса двигателя и динамический момент инерции ротора Масса изолированных проводов обмотки статора:
Масса алюминия короткозамкнутого ротора с литой клеткой (число лопаток на роторе N=14, ширина лопатки средняя bл=5мм, длина лопатки lл=70мм, высота hл=56мм):
Масса стали сердечников статора и ротора:
Масса изоляции статора:
Масса конструкционных материалов:
Масса двигателя:
Динамический момент инерции:
2.15 Расчет надежности обмотки статора Пусть вероятность наличия хотя бы одного дефекта изоляции провода длиной 100мм после укладки: q1=0.2, коэффициент характеризующий качество пропитки: kпр=0.5, тогда дефектность витковой изоляции до начала эксплуатации электродвигателя:
Вероятность плотного касания соседних витков:
Количество проводников, находящихся в наружном слое секции:
во внутреннем слое:
Доля пар соседних элементарных витков, принадлежащих к одному эффективному:
Общая длина пар соседних витков в обмотке:
Количество последовательно соединенных секций в фазе:
Среднее значение фазных коммутационных перенапряжений:
Среднее квадратичное отклонение величины коммутационных фазных перенапряжений:
Номинальное фазное напряжение, приходящееся на секцию:
Вероятность отказа витковой изоляции при воздействии одного импульса перенапряжения и при условии, что на касающихся витках имеются совпадающие дефекты:
Скорость роста дефектности витковой изоляции для класса F:
Вероятность возникновения короткого замыкания витковой изоляции на длине касающихся витков в течение 20000 часов:
Вероятность отказа межвитковой изоляции в течение 20000 часов:
Вероятность безотказной работы межвитковой изоляции в течение 20000 часов:
Вероятность безотказной работы обмотки статора за 20000 часов:
ГОСТ 19523-74 устанавливает минимальную вероятность безотказной работы в течении 10000 часов 0.9. В нашем случае имеем 0.972 при времени работы 20000 часов. 2.16 Механический расчет вала и подбор подшипников качения.
Рис.7. Эскиз вала ротора. Таблица 1 - Участок вала b:
Из таблицы (суммы 6ого и 9ого столбцов): Sb=3.1155 S0=0.013 Таблица 2 - Участок вала a:
Сумма 6ого столбца таблицы 2: Sа=3.5218 Размеры участков:
Прогиб вала посередине сердечника под воздействием силы тяжести:
Прогиб:
Номинальный момент двигателя:
Поперечная сила передачи (муфта МУВП1-75):
Прогиб вала посередине сердечника от поперечной силы передачи:
Начальный расчетный эксцентриситет:
Сила одностороннего магнитного притяжения:
Дополнительный прогиб вала от силы магнитного притяжения:
Установившийся прогиб вала от силы магнитного притяжения:
Результирующий прогиб вала:
составляет менее 10% от зазора. С учетом влияния силы тяжести соединительного устройства первая критическая частота вращения вала:
Значительно превышает максимальную рабочую частоту вращения. Расчет вала на прочность. При соединении муфтой расстояние от середины втулки муфты до первой ступени вала:
Момент кручения:
Изгибающий момент на выходной части вала:
Момент сопротивления при изгибе:
При совместном действии изгиба и кручения приведенное напряжение:
Полученное значение более чем на порядок отличается от критического (материал вала сталь 45, однако можно принять менее прочный материал, например сталь 30). Подбор подшипников качения. По рекомендациям данным в пособии «Проектирование серий электрических машин» Гурина Я.С., на выходном конце вала устанавливаем роликовый подшипник, на участке а – шариковый. Наибольшая радиальная нагрузка на шариковый подшипник:
Динамическая приведенная нагрузка:
Необходимая динамическая грузоподъемность (принимаем расчетный срок службы подшипника 20000 часов):
По приложению 14[2], с учетом повышения надежности, выбираем подшипник №216 со значением С=56000Н. Аналогично выбираем роликовый подшипник: Наибольшая радиальная нагрузка на шариковый подшипник:
Динамическая приведенная нагрузка:
Необходимая динамическая грузоподъемность:
По приложению 14[2], с учетом повышения надежности, выбираем подшипник №2216 со значением С=78000Н. В подшипниковых узлах делаем устройства для замены консистентной смазки. ЗАКЛЮЧЕНИЕ Спроектированный двигатель отвечает современным требованиям к асинхронным трехфазным электродвигателям общепромышленного исполнения. Сравнивая энергетические параметры спроектированного двигателя с аналогом (5А250S6У3) можно отметить чуть более низкий КПД по сравнению с аналогом – 91.8% против 93%, но также следует отметить больший коэффициент мощности – 0.86 против 0.83, таким образом,главный энергетический показатель (произведение КПД на cosφ) спроектированного двигателя 0.79 против 0.77 в аналоге. К плюсам полученного двигателя можно отнести кратность пускового тока, равная 5.3, тогда как в аналоге 6.0, однако этот факт уравновешивается более низким пусковым моментом – 1.4 против 2.0. Перегрузочная способность двигателя достаточно высока – кратность максимального момента 2.4. Согласно результатам теплового расчета, обмотка двигателя используется эффективно, превышение температуры обмоток над температурой окружающей среды около 62°С, что полностью соответствует рекомендуемому превышению для изоляции класса F. Двигатель приблизительно на 30 кг легче аналога, имеет меньшую длину. Динамический момент инерции ротора на 20% меньше чем в аналоге, что является существенным плюсом для двигателя. Более низкий момент инерции был получен путем применения аксиальных охлаждающий каналов в сердечнике ротора, таким образом улучшили и охлаждение двигателя. Механический расчет вала двигателя показал, что прогиб вала под серединой сердечника очень мал (менее 2% от зазора). Двигатель оснащен устройством для замены консистентной смазки подшипников, тем самым увеличивая его надежность. Расчет надежности обмотки статора показал, что двигатель полностью соответствует ГОСТу 19523-74 по вероятности безотказной работы. Конструкция двигателя была спроектирована в соответствии с рекомендациями Я.С. Гурина, изложенными в пособии «Проектирование серий электрических машин». СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1. Гольдберг О.Д. Проектирование электрических машин/О.Д. Гольдберг, Я.С.Гурин, И.С. Свириденко. – М.: Высшая школа, 2001. – 430с. 2. Гурин Я.С. Проектирование серий электрических машин. – М.: Энергия, 1998. – 480с. 3. Иванов-СмоленскийА.В. Электрические машины. Учебник для ВУЗов. – М.: Высшая школа, 2006. – 930с. 4. Копылов И.П. Проектирование электрических машин. – М.: Высшая школа, 2002. – 757с. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© 2009 Все права защищены. |