| |||||
МЕНЮ
| Курсовая работа: Расчет двухступенчатых цилиндрических редукторовКурсовая работа: Расчет двухступенчатых цилиндрических редукторовСОДЕРЖАНИЕ ВВЕДЕНИЕ 1. ПОДБОР ЭЛЕКТРОДВИГАТЕЛЯ 2. РАСЧЕТ РЕМЕННОЙ ПЕРЕДАЧИ 3. РАСЧЕТ ТИХОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА 4. РАСЧЕТ БЫСТРОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА 5.КОНСТРУКТИВНЫЕ РАЗМЕРЫ КОРПУСА И КРЫШКИ РЕДУКТОРА 6. РАСЧЕТ ВАЛОВ И ПОДШИПНИКОВ РЕДУКТОРА 6.1 Расчет входного вала 6.2 Расчет промежуточного вала 6.3 Расчет выходного вала 7. РАСЧЕТ ШПОНОЧНЫХ СОЕДИНЕНИЙ 7.1 Выбор материала и методика расчета 7.2 Расчет шпонок 8. ВЫБОР И РАСЧЕТ СОЕДИНИТЕЛЬНЫХ МУФТ 9. ВЫБОР СМАЗКИ ДЛЯ ПЕРЕДАЧ И ПОДШИПНИКОВ 9.1 Смазывание зубчатого зацепления 9.2 Смазывание подшипников ЛИТЕРАТУРА ПРИЛОЖЕНИЕ ВВЕДЕНИЕ Редуктором называют механизм, состоящий из зубчатых или червячных (колес) передач, выполненных в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Назначение редуктора – понижение угловой скорости и соответственно повышение вращающегося момента ведомого вала по сравнению с ведущим. Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещены элементы передачи – зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе размещают также другие вспомогательные устройства. Редукторы классифицируются по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.). Двухступенчатые цилиндрические редукторы. Наиболее распространены двухступенчатые горизонтальные редукторы, выполненные по развернутой схеме. Эти редукторы отличаются простотой, но из-за несимметричного расположения колес на валах повышается концентрация нагрузки по длине зуба. Поэтому в этих редукторах следует применять жесткие валы. 1. ПОДБОР ЭЛЕКТРОДВИГАТЕЛЯ На рис. 1.1 изображен компоновочный вариант кинематической схемы приводной станции: 1 - электродвигатель; 2 – гибкая передача; 3- редуктор цилиндрический; 4- муфта соединительная. Определяем
потребную мощность
где РТ - мощность, затрачиваемая
на тех. процесс; Рт=10000Вт;
где nт - частота вращения технологического вала; nт=55 мин-1
где Принимаем
Принимаем передаточные числа редуктора;
Определим общее передаточное число редуктора
Мощность двигателя определим по формуле:
Выбираем из каталога конкретный электродвигатель серии 4А. Двигатель 4АM160S4У3,Рэ =15000 Вт, nэ =1477 мин-1, dэ=42 мм. Определяем передаточное отношение ременной передачи:
Определяем действительное общее передаточное число привода и производим его разбивку по передачам, руководствуясь тем, что:
Для схемы на рис.1.1.
Uобщ=2900/80=36,25 Uред=4·3,15=12,6 Uцеп=29,54/12,6=2,34 Определяем расчетные параметры на всех валах приводной станции:
где
Рт=10000 Вт Р3=10000/(0,99 0,95)=10632,6Вт. Р2=10632,6 /(0,99 0,96)=11187,5Вт. Рдв= Р1=11645 Вт. Определяем крутящие моменты на валах.
Проведем предварительный расчет валов. Определяем диаметр вала из условия прочности на кручение по формуле пониженных допускаемых напряжениях.
где
2. РАСЧЁТ ЦЕПНОЙ ПЕРЕДАЧИОпределяем шаг цепи из условия:
где Т2—вращающий момент на ведущей звездочке, Н∙м; Кэ—коэффициент учитывающий условия эксплуатации; Кэ=КдКаКнКрегКсмКреж ; (2.2) где Кд—коэффициент, учитывающий динамичность нагрузки; Кд=1 стр.269/3/ Ка—коэффициент учитывающий длину цепи; Ка=1 стр.269/3/ Кн—коэффициент, учитывающий наклон передачи; Кн=1.25 стр.269/3/ Крег—коэффициент учитывающий регулировку передачи; Крег=1.1 стр.269/3/ Ксм—коэффициент учитывающий характер смазки; Ксм=1.5 стр.269/3/ Креж-- коэффициент учитывающий режим работы; Креж=1 стр.269/3/ Кэ=1×1×1.25×1.1×1.5×1=2.06. Z1—число зубьев ведущей звёздочки; Z1=29-2U (2.3) Z1=29-2∙2,2,34=24,32, принимаем Z1=25 согласно рекомендации стр. 91 /4/. [p]—допустимое давление в шарнирах цепи, Н/мм2; [p]=32 Н/мм2 стр. 91 /4/. v—число рядов цепи; Принимаем v=2.
Принимаем стандартный шаг цепи р=38,1мм. Определяем число ведомой звёздочки: Z2=Z1U=25∙2,34=58,5 принимаем Z2=59. Определяем фактическое передаточное отношение: uцеп = uцеп = Согласно рекомендациям стр. 92/4/ принимаем межосевое расстояние в шагах ар=40. Вычисляем число звеньев цепи lр.
принимаем согласно рекомендации стр. 92 /4/ lр=166 Определяем фактическое межосевое расстояние в шагах:
Принимаем межосевое расстояние в шагах аt=48. Определяем фактическое межосевое расстояние а: а=аt∙р=48∙38,1=1828,8 мм. Определяем длину цепи l мм: l=lрр=166·38,1=6324,6 мм. Определяем диаметры звёздочек: dд= Ведущей звёздочки: dд1= Ведомой звёздочки: dд2= Диаметр выступов звёздочки:
где К—коэффициент высоты зуба, К=0,7 стр. 92 /4/; Кz—коэффициент числа зубьев; Кz=ctg1800/Z Кz1=ctg1800/25=7,91 Кz1=ctg1800/59=18,76 λ—геометрическая характеристика зацепления: λ=р/d1 (2.8) где d—диаметр ролика шарнира цепи, мм d=25,4 стр. 131 /7/. λ=31,75/22,23=1,25 Ведущей звёздочки:
Ведомой звёздочки:
Диаметры окружностей впадин:
Ведущей звёздочки:
Ведомой звёздочки:
Определяем фактическую скорость цепи:
Определяем окружную силу передаваемую цепью:
Проверяем давление в шарнирах цепи: рц= А—площадь опорной поверхности шарнира, мм; А=d1b3 (2.13) b3—ширина внутреннего звена цепи, мм; b3=25,4 мм А=2·11,1∙25,4=563,8 мм2 рц= Уточняем допустимое давление в шарнирах цепи в зависимости от скорости цепи стр. 91 /4/.: [рц]=24 Н/мм2 Условие прочности выполняется. Определяем коэффициент запаса прочности:
Fр—разрушающая нагрузка цепи, Н, Fр=254000 Н стр. 131 табл. 8.1 /8/. Кд—коэффициент, учитывающий динамичность нагрузки; Кд=1 стр.269/8/ F0—предварительное натяжение цепи от провисания ведомой ветви ( от силы тяжести): F0=Кfqag (2.15) где Кf—коэффициент провисания, Кf=3 стр. 94 /4/. q—масса 1 м цепи, q=11 кг а—межосевое расстояние, м; а=1,828 м. g—ускорение свободного падения, g=9,81 м/с2. F0=3∙11∙1,82∙9.81=589,2 Н. Fv—натяжение цепи от центробежных сил, Н; Fv=qv2 (2.16) Fv=11∙1,862=38,05 Н Тогда:
Определяем силу давления цепи на вал: Fоп=kвFt+2F0 (2.17) Kв—коэффициент нагрузки вала, kв=1,15 стр.90 табл. 5.7 /4/. Fоп=1,15∙5716+2∙589,2=7758 Н 3. РАСЧЕТ БЫСТРОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРАПринимаем для изготовления шестерни и колеса обеих ступеней для уменьшения номенклатуры сталь 40Х (улучшение) со следующими механическими характеристиками: для колеса σВ = 830 Н/мм2, σТ = 540 Н/мм2, НВ=260; для шестерни σВ = 930 Н/мм2, σТ = 690 Н/мм2, НВ=280. Эквивалентное число циклов перемены напряжений определяем по формуле (3.1) для колеса тихоходной ступени
где n – частота вращения того из колес, для которого определяется допускаемое напряжение, об/мин. Определяем число циклов напряжения по формуле (3.2)
где Тmax = Т1 – максимальный момент, передаваемый рассчитываемым колесом в течение Lh1 часов за весь срок службы при частоте вращения nT1 об/мин; Т2…Тi – передаваемые моменты в течение времени Lh2…Lhi при nT2…nTi оборотах в минуту; с – число колес, находящихся в зацеплении с рассчитываемым. Так как режим нагрузки постоянный, NHE в формуле (3.2) заменяется на расчетное число циклов перемены напряжений, определяемое по формуле:
где Lh – расчетный срок службы передачи. NК1 = 60∙1477∙2000=17,7∙107 NК2 = 60∙369,25∙2000=4,43∙107 Определяем базовый предел контактной выносливости из формулы (3.4) для шестерен быстроходной и тихоходной ступени
для колес
Допускаемые напряжения изгиба при расчете на выносливость определяются по формуле:
Выбираем
допустимое Производим расчет на прочность тихоходной ступени как более нагруженной.
Делительный диаметр шестерни d1 (мм) определяется из условия обеспечения контактной прочности по формуле
где Kd – вспомогательный коэффициент, МПа1/3; Kd=770 – для стальных прямозубых колес; Kd=675 – для стальных косозубых и шевронных колес;
Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев по формуле: aw=Ка(u+1) где для косозубых колёс Ка=43, а передаточное отношение редуктора uр=4. yab—коэффициент
ширины колеса. Принимаем для косозубых колёс коэффициент ширины венца по межосевому
расстоянию yab = aw= Рабочая ширина тихоходной ступени Принимаем
Для определения остальных диаметров зубчатых колес необходимо найти модуль, ориентировочное значение которого можно вычислить по формуле
Определяем модуль зацепления по формуле (3.8):
Принимая
Определяем суммарное число зубьев шестерни и колеса: ZΣ= ZΣ= Уточняем угол наклона зубьев: сosβ= сosβ= Тогда угол β=11028’. Определяем действительное число зубьев шестерни:
Принимаем Z1=30 Число зубьев колеса: Z2=ZΣ-Z1 (3.13) Z2=147-30=117 Уточняем диаметры:
Уточняем межосевое расстояние:
Диаметры колёс:
Производим проверочный расчет по контактным напряжениям, для чего определяем: окружную силу
окружную скорость определим по формуле
По таблице 9.10 [1] назначаем 9-ю степень точности. По таблице 9.9 [1] g0=73, по таблице 9.7 [1] δН=0,002. Удельная окружная динамическая сила по формуле (3.20).
где δН – коэффициент, учитывающий влияние вида зубчатой передачи и модификации профиля зубьев. Значения δН при расчете на контактные и изгибные напряжения различны; g0 – коэффициент, учитывающий влияние разности шагов зацепления зубьев шестерни и колеса; v – окружная скорость, м/с. Страницы: 1, 2 |
ИНТЕРЕСНОЕ | |||
|