рефераты бесплатно
 

МЕНЮ


Курсовая работа: Полный расчет ректификационной колонны

 

где F – относительный мольный расход питания.

 

Определяем температуры для нижней и верхней части колонны для жидкости и пара из диаграммы «Зависимость температуры от равновесных составов пара и жидкости» (приложение1):

ْْC, ْC,

ْْْC, ْC.

Определяем объемный расход пара:


 кмоль/с

Расход пара в нижней и верхней части колонны определяется по формуле:

,

где p0=760 мм рт. ст. – атмосферное давление,

T0=273 K- абсолютная температура.

м3/с

 м3/с

Молярную массу паровой смеси в нижней и верхней части колоны находим по формуле:

 кг/кмоль

 кг/кмоль

Массовые расходы паров в нижней и верхней части колоны находим по формуле:

 кг/с;

 кг/с;


Определим плотности пара в верхней и нижней части колонны по формуле:

кг/м3

кг/м3

Определим вязкость пара в верхней и нижней части колонны для ацетона (1) и четыреххлористого углерода (2):

,

где табличные данные: Па. с, Па. с,

С1=651,С2=384- константы уравнения.

а) для нижней части колонны:

Па.с  Па.с

 

б) для верхней части колонны:

 Па.с

 Па.с


Определим вязкость смеси пара в нижней и верхней части колонны по формуле:

 Па.с

 Па.с

Определим плотности жидкости по формуле:

,

где плотности ацетона, четыреххлористого углерода соответственно.

а) для нижней части колонны:

 кг/м3

 кг/м3

 кг/м3

б) для верхней части колонны:

 кг/м3

 кг/м3

 кг/м3

Определим вязкость смеси жидкости для нижней и верхней части колонны по формуле:

,

где вязкости ацетона, четыреххлористого углерода соответственно.

 мПа.с  мПа.с

 мПа.с  мПа.с

 Па.с

Па.с

Поверхностное натяжение смеси жидкостей в верхней и нижней части колонны определим по формуле:

,

где поверхностное натяжение ацетона, четыреххлористого углерода соответственно.

Н/м

 Н/м

 Н/м

 Н/м

м/Н

 Н/м

м/Н

 Н/м

Находим мольные и массовые расходы жидкости в нижней и верхней части колонны:

кмоль/с

кг/кмоль

кг/с

 кг/с

 кмоль/с

 кг/кмоль

 кг/с

 кг/с

2.1.4 Расчет теплового баланса установки

Тепловой баланс ректификационной колонны выражается общим уравнением:

 

где QK – тепловая нагрузка куба; QD –количество теплоты, передаваемой от пара к воде; Qпот – тепловые потери (5%);  -теплоёмкости соответствующие дистилляту, кубовому остатку и исходной смеси;  - температуры соответствующие дистилляту, кубовому остатку и исходной смеси(находим из диаграммы «Зависимость температуры от равновесных составов пара и жидкости» приложение 1):

, , .

Найдем удельную теплоту конденсации паров дистиллята по аддитивной формуле:

кДж/кг


где  - теплоты испарения ацетона и четыреххлористого углерода при температуре дистиллята , .

,

где исходные данные: A1 =72.18; t 1кр=235.1; A2=25.64; t2кр=283.4

;

 .

Определим тепловую нагрузку дефлегматора по формуле:

кВт

Определим теплоёмкости смеси:

Для ацетона(1): c0=2.11кДж/(кгК); с1=0.0028 кДж/(кгК);

Для четыреххлористого углерода (2): c0=0.85кДж/(кгК); с1=0.00037 кДж/(кгК);

 ,

    

   

Тогда:

2.2 Гидравлический расчет насадочной колонны аппарата

бор рабочей скорости паров обусловлен многими факторами и обычно осуществляется путем технико-экономического расчета для каждого конкретного процесса. Для ректификационных колонн, работающих в пленочном режиме при атмосферном давление, рабочую скорость можно принять на 20% ниже скорости захлёбывания:

                            (26)

где  - скорость захлебывания пара, м/с;  – удельная поверхность насадки, м2/м3; Vсв – свободный объём насадки, м3/м3; μж – динамический коэффициент вязкости жидкости, мПа∙с;  и  - массовые расходы жидкой и паровой фаз, кг/с;  и  - плотность пара и жидкости соответственно, кг/м3.

Выбираем в качестве насадки - стальные кольца Рашига:

Кольца Рашига 25 мм:

в:

 

н:

Тогда рабочая скорость в верхней и нижней части колонны равна:

По рабочей скорости определяем диаметр колонны:

,

где объемный расход пара при рабочих условиях в колонне, м3/с.

;

;

Выбираем стандартный аппарат с диаметром 2.2 м, с кольцами Рашига диаметром 25мм и уточняем рабочую скорость по формуле:

 

Плотность орошения для верхней и нижней части колонны определяют по формуле:

,

где U – плотность орошения, м3/(м2.с);

- объемный расход жидкости, м3/с;

S – площадь поперечного сечения колонны, м2.

,

где D – диаметр колонны, м.

так как плотность орошения меньше допустимых значений, то необходимо выбрать кольца Рашига с меньшим диаметром.


Кольца Рашига 50 мм:

в:

 

н:

Тогда рабочая скорость в верхней и нижней части колонны равна:

По рабочей скорости определяем диаметр колонны:

,

где объемный расход пара при рабочих условиях в колонне, м3/с.

;

;

Выбираем стандартный аппарат с диаметром 2 м, с кольцами Рашига диаметром 50мм и уточняем рабочую скорость по формуле:


 

Плотность орошения для верхней и нижней части колонны определяют по формуле:

,

где U – плотность орошения, м3/(м2.с);

- объемный расход жидкости, м3/с;

S – площадь поперечного сечения колонны, м2.

,

где D – диаметр колонны, м.

Так как плотность орошения удовлетворяет допустимым значениям, то в дальнейших расчетах используем кольца Рашига диаметром 50 мм.

Активную поверхность насадки  находят по формуле:


,

где U – плотность орошения, м3/(м2.с);

 - удельная поверхность насадки, м2 /м3;

p, q – постоянные, зависящие от типа и размера насадки.

Для выбранных колец Рашига с диаметром 50 мм:

p=0.024, q=0.012.

Определим активную поверхность насадки в нижней и верхней части колонны:

Одной из важных характеристик аппарата является гидравлическое сопротивление насадки, который зависит от режима движения пара (газа). Для расчета необходимо определить число Рейнольдса:

,

где  - вязкость пара.

Определяем значения числа Рейнольдса для нижней и верхней части колонны:


Определяем коэффициент сопротивления для верхней и нижней части колонны:

Так как число Reп>40, то

Определяем гидравлическое сопротивление для верхней и нижней части колонны:

 ,

где H=1 м – высота слоя.

Па/м

Па/м

,

где b- коэффициент, для колец Рашига 50 мм: b= 47.10-3.

=375.61 Па/м

=1093.32Па/м


2.3 Расчет высоты колонны

Определим коэффициент диффузии газа для нижней и верней части колонны по формуле:

,

где T – температура газа, К; p- давления газа, кгс/см2; MA,MB- мольные массы газов A и B;

vA,vB- мольный объемы газов А и В, определяемые, как сумма атомных объемов элементов, входящих в состав газа.

Пусть А – ацетон (МА=58 кг/кмоль);

В- четыреххлористый углерод (МВ=154кг/кмоль).

см3/атом

 см3/атом

м2/с;

 м2/с;

Определим коэффициент диффузии в разбавленных растворах для верхней и нижней части колонны:

,

где М – мольная масса растворителя;

v- мольный объем диффундирующего вещества;

T –температура, К;

- динамический коэффициент вязкости растворителя, мПа.с;

- параметр, учитывающий ассоциацию молекул растворителя (А=В=1).

Пусть А растворяется в В (В- растворитель):

 м2/с;

 м2/с.

Пусть В растворяется в А (А- растворитель):

 м2/с;

 м2/с.

Определим коэффициент диффузии смеси жидкостей для верхней и нижней части колонны по формуле:

 м2/с;

 м2/с.

По диаграмме «Равновесное состояние жидкости и пара» определяем коэффициенты распределения нижней и верхней частей колонны:

Через xн, xв определяем углы α и β соответственно (приложение 2).


 

Определяем число единиц переноса графическим методом интегрирования для нижней и верхней части колонны:

yw=xw=0.06

yD=xD=0.8

x

y*

y

y*-y

.102

6.00

8.70

17.9

26.4

37.4

45.1

48.00

52.55

56.90

69.6

76.2

80.0

20.25

27.10

40.75

48.95

56.55

61.25

63.00

65.50

70.65

75.60

79.85

82.00

6.00

10.0

21.0

31.5

42.5

54.0

56.9

61.0

66.5

72.0

77.0

80.0

14.25

17.10

19.75

17.45

14.05

7.25

6.10

4.50

4.15

3.60

2.85

2.00

7.02

5.84

5.06

5.73

7.12

13.79

16.39

22.22

24.01

27.78

35.09

50.00

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.