рефераты бесплатно
 

МЕНЮ


Дипломная работа: Водоснабжение города и промышленных предприятий

                     котспот

где: hп – потери напора в камере хлопьеобразования, согластно[1,п.6.219] принимаются равными 0,4 м;

Время пребывания воды в камере хлопьеобразования определяем по формуле:

 

кк.х 60

что соответствует данным СниП 2.04.02-84(t ≥20 мин)

Расход воды приходящейся на каждую камеру:

Расход воды по каждой трубе:

трк

 

Распределение воды по площади камеры предусмотрено при помощи перфорированных труб с отверстиями, направленными горизонтально. В каждой камере размещают две – четыре перфорированной трубы на расстояниях не более 3 м; приняты две трубы.

Диаметр трубы определяем по расходу и скорости (таб.Шевелева):

                           v = 0.5-0.6 м/сек → d= 300 мм

Площадь отверстий диаметром 15-25 мм в стенках перфорированной распределительной трубы составляет 30-40 % площади ее поперечного сечения:

отв

Принимаем отверстия d = 25мм площадь

Число отверстий на каждой трубе:

отв

Отверстия располагаются в два ряда с шагом:

e0=Lk/nотв=8000/62=129 мм

Из камеры в горизонтальный отстойник воду отводят над затопленным водосливом. Верх стенки водослива располагают ниже уровня воды в отстойнике на величину:

                              

где:  - скорость движения воды через водослив, 0,05 м/сек;

 - ширина камеры, 6м;

За стенкой водослива устанавливают подвесную перегородку, погруженную на 0,25-0,33 высоты отстойника, чтобы отклонить поток воды книзу. Скорость между стенкой водослива и перегородкой должна быть не более 0,03 м/сек.

5.5.5. Расчет скорых фильтров

Фильтрованием называется процесс прохождения осветляемой воды через слой фильтрующего материала. Фильтрование, так же как и отстаивание, принимают для осветления воды, т.е. для задержания находящихся в воде взвешенных веществ. Вода после выхода из отстойников должна содержать не более 8-12 мг/л взвешенных веществ. После фильтрования мутность воды, предназначенной для питьевых целей, не должна превышать 2 мг/л.

Помимо взвешенных веществ фильтры должны задержать большую часть микроорганизмов и микрофлоры и понижать цветность воды до требований ГОСТ, т.е. до 200.

Двухслойный безнапорный фильтр представляет собой резервуар, загруженный слоями антрацита (верхний слой) с крупностью                    зерен 0,8-1,8 мм и толщиной слоя 0,4 м и кварцевого песка (нижний слой с крупностью зерен 0,5-1,2 мм и толщиной слоя 0,7м), согластно [1,табл.21].

Суммарная площадь скорых фильтров:

где   Т – время работы станции в течение суток = 24 ч.;

vр.н – расчетная скорость фильтрования при нормальном режиме, согласно [1,табл.21], 0,7 м/час;

n – количество промывок каждого фильтра за сутки, 2;

w – интенсивность промывки, 14-16 л/(с*м2);

t1 – продолжительность промывки, 0,12 ч;

t2 – время простоя фильтра в связи с промывкой, 0,33 ч;

Число фильтров

Площадь одного фильтра:

                                      , размер в плане 5,5х 6 м.

Скорость фильтрования воды при форсированном режиме составит:

                              

где  N1 – количество фильтров, находящихся в ремонте, N1=1;

Поддерживающий слой.

Поддерживающий слой из гравия имеет общую высоту 500мм и крупность зерен 2-40 мм [1,табл.22].

Потери напора в поддерживающих слоях при промывке фильтрующего слоя определяются по формуле:

hп.с.=0,022*Нп.с.*ω= 022*0,5*15=0,16 м

где, Нп.с.- высота поддерживающего слоя, м;

Расчет распределительной системы фильтра.

 В проектируемом фильтре распределительная система служит как для равномерного распределения промывной воды по площади фильтра, так и для сбора профильтрованной воды.

Интенсивность промывки принята w = 15 л/(сек*м2), согластно [1,табл.23].Тогда количество промывной воды, необходимо для одного фильтра:

Диаметр коллектора распределительной системы определяют по скорости входа промывной воды dкол = 700 мм, что при расходе 495 л/сек соответствует скорости vкол =1,13 м/сек ( в начале коллектора рекомендуется vкол = 1-1,2 м/с).

Площадь дна фильтра, приходящаяся на каждое отверстие распределительной системы при расстоянии между ними m=0,27м                 (m = 0,25 – 0,35) и наружном диаметре коллектора Dкол=700 мм, составит:

а расход промывной воды, поступающей через одно отверстие,

Диаметр труб ответвлений принимаем dотв=80 мм (ГОСТ 3262-62), тогда скорость входа воды в отверстия будет v=1,7 м/с.

В нижней части ответвлений под углом 600 к вертикале предусматриваются отверстия диаметром 10-12 мм.

Отношение площади всех отверстий в ответвлениях распределительной системы ∑f0 к площади фильтра F принимаем равным 0,25-0,30%

При площади одного фильтра F=33 м2 суммарная площадь отверстий составит:

При диаметре отверстий δ0=14 мм, площадь отверстий f0=1,54 см2. Следовательно, общее количество отверстий в распределительной системе каждого фильтра:

Общее количество отверстий на каждом фильтре при расстоянии между осями отверстий 0,25 м составит:

Количество отверстий, приходящихся на каждое ответвление 536/44=12шт  

При длине каждого отверстия lотв=(6-0,7)/2=2,65 м шаг оси отверстий на ответвлении бедет равен:

Высота фильтра:

                               Нф= hз + hпод.сл + hв + hдоп =1,1+0,5+2+0,5 = 4,1 м

где  hз – высота слоя загрузки, [1,табл.21];

hпод.сл – поддерживающий слой гравия, [1,табл.22];

hв – высота слоя воды под поверхностью загрузки, 2м;

hдоп – 0,5м;

5.5.6. Система для сбора и отвода промывной воды

Для сбора и отведения промывной воды устраиваются три желоба. Расстояние между осями желобов составляет 2 м [1,п.б.111]. Поперечное сечение желоба принимается: верхняя часть – прямоугольная, нижняя – треугольная.

Ширину желоба определяем по формуле:

                    

где  Кж – коэффициент , принимаемый равным для пятиугольного  желоба-2,1 [1,п.б.111];

qж – расход воды по желобу, м3/сек;

аж – отношение высоты прямоугольной части желоба к половине его ширины, от 1 до 1,5;

Определим число желобов: n = 6 / 2.2 = 3 шт ,тогда расстояние между осями желобов составит: 6 / 3 = 2 м ( рекомендуется не более 2,2 м)

Расход промывной воды, приходящейся на один желоб:

                    

Высота прямоугольной части желоба:  hпр = 0,75*B = 0,75*0,65=0,49 м

Полезная высота желоба:                        h = 1.25*B = 1.25*0,65 = 0,81 м

Конструктивная высота желоба ( с учетом толщины стенки) :

                     hк = h + 0.08 = 0,81 + 0,08 = 0,89 м. Скорость движения воды в желобе  v = 0,61 м/сек.

Высота кромки желоба над поверхностью фильтрующей загрузки при Н=1,5м и относительном расширении фильтрующей загрузки е = 30% по формуле:

                    

Расход воды на промывку фильтра:

                    

где Тр – продолжительность работы фильтра между двумя промывками, равная

                   Тр = Т0 – (t1+t2+t3) = 12-(0.1+0.33+0.17) = 11.4 ч

где  Т0 – продолжительность рабочего фильтроцикла, 8 –12 ч;

t3 – продолжительность сброса первого фильтрата в сток;

w – интенсивность промывки;

N – количество фильтров, 10 шт;

5.5.7. Расчет сборного канала

Загрязненная промывная вода из желобов скорого фильтра свободно изливается в сборный канал, откуда отводится в сток.

Поскольку фильтр имеет площадь f = 33м2 ‹ 40 м2, он устроен с боковым сборным каналом, непосредственно примыкающим к стенке фильтра. При отводе промывной воды с фильтра сборный канал должен предотвращать создание подпора на выходе воды из желобов.

Поэтому расстояние от дна желоба до дна бокового сборного канала должно быть не менее:

                    

  где  qкан – расход воды в канале , 0,495 м3/сек;

bкан – минимальная допустимая ширина канала, согласно [1,П.6.112] принимается 0,7 м;

Скорость движения воды  в конце сборного канала при размерах поперечного сечения fкан = 0,7*0,7=0,49 м2, составит vкан = qкан / fкан = 0,495/0,49=0,8 м/сек, что примерно отвечает рекомендуемой минимальной скорости, v = 0.8 м/сек.

5.5.8.. Определение потерь напора  при промывке фильтра

Напор, под которым подается вода для промывки фильтра, должна быть не менее:

                    

где   Нг – геометрическая высота подъема воды;

Нг = 4,5+0,7+1,1=6,3 м

где  1,5- высота загрузки;

0,7 – высота над поверхностью загрузки;

∑h – сумма потерь напора при промывки фильтра;

где  hр.с – потери напора в отверстиях труб распределительной системы фильтра;

где а– отношение суммы площадей всех отверстий распределительной системы к площади сечения коллектора, 0,25;

vкол – скорость движения воды в коллекторе в м/сек;

vр.т – то же, в распределительных трубах в м/сек;

hф – потери напора в фильтрующем слое, 1м;

hп.с – потери напора в гравийных поддерживающих слоях;

hп.т – потери напора в трубопроводе;

            hп.т = i*l =100*0,00649=0,65 м

                     при q = 435 л/сек, d = 600 мм и v = 1,77 м/сек гидравлический уклон i = 0,00649, общая длина трубопровода 100 м

hо.с – потери напора на образование скорости во всасывающем и напорном трубопроводах, 0,4 м;

hм.с – потери напора на местные сопротивления, 0,6 м;

5.5.9.Подбор насосов для промывки фильтра

Для подачи промывной воды в качестве 495 л/сек принято два одновременно действующих центробежных насоса марки 12НД с производительностью 720 м3/ч (200 л/с) каждый с напором 21 м, при скорости вращения n=960 об/мин. Мощность на валу насоса 48 кВт, мощность эл. двигателя 55 кВт, КПД насоса 0,87.

Кроме двух рабочих насосов принят один резервный агрегат.

5.5.10. Расчет отделения хлораторной

Для интесификации хода коагулянта и обесцвечивания, а также для улучшения санитарного состояния сооружений рукомендуется проводить хлорирование воды.

Доза первичного хлорирования Дх1 = 4 мг/л;

Доза вторичного хлорирования Дх2 = 1 мг/л;

Определим суточный расход хлора: расход хлора для предварительного хлорирования воды при Дх1 = 4 мг/л равен:

                    

расход хлора для предварительного хлорирования воды при Дх2 = 1 мг/л;

равен:        

Общий расход хлора равен 8,4+2=10,4 кг/ч, или 250 кг/сут

Помещение хлораторной разделено глухой стенкой на две части (хлора торная и аппаратная) с самостоятельными запасными выходами наружу из каждой

В хлораторной  устанавливают три вакуумных хлоратора ЛОНИИ-100 производительностью до 10 кг/ч с газовым измерителем. Два хлоратора являются рабочими, а один служит резервным.

В аппаратной кроме хлораторов устанавливаются три промежуточных хлорных баллона. Они требуются в больших установках для задержания загрязнений перед поступлением хлорного газа в хлоратор из расходных хлорных баллонов. 

Число расходных хлорных баллонов:

nбак=Qхл/Sбак=10,4/0,5=21 шт.

где  Sбак=0,5 – 0,7 кг/ч - съем хлора  с одного баллона без искусственного подогрева  при температуре воздуха в помещении 180С.

Для уменьшения количества расходных баллонов в хлораторной устанавливаются стальные бочки – испарители диаметром D=0,746 м и длиной L =1,6 м. Такая бочка имеет емкость 500 л и вмещает до 625 кг хлора. Съем хлора с 1 м2 боковой поверхности бочек составляет Sхл=3 кг/ч. Боковая поверхность бочки при принятых выше размерах составит 3,65 м2.

Таким образом, съем хлора с одной бочки будет

qб=Fб*Sхл=3.65*3=10.95 кг/ч

Для обеспечения подачи хлора в количестве 15,83 кг/ч нужно иметь 10,4/10,95=1 бочки испарителя. Чтобы пополнить расход хлора из бочки, его переливают из стандартных баллонов емкостью 55 л, создавая разрежение в бочках путем отсоса хлор газа эжектором. Это мероприятие позволяет увеличить съем хлора до 5 кг/ч с одного баллона и, следовательно, сократить количество одновременно действующих расходных баллонов до 10,5/5 2 шт  

Всего за сутки потребуется баллонов с жидким хлором:

250/55=5 баллона

где: 55 л – объем одного баллона

В помещении хлораторной предусматриваются резервные баллоны в количестве 50% суточной потребности т.е. 2 баллона.

Основной запас хлора хранится вне очистной станции, на расходных складах, рассчитанных на месячную потребность в хлоре.

n=250*30/55=136 баллонов

Доставка баллонов с расходного склада на очистную станцию производится автомашиной.

Вентиляцию хлораторной и склада предусматриваем общеобменную с 12 – ти кратным обменом воздуха в час.

Загрязненный воздух отсасывается из нижней зоны через подпольные каналы с решетками и выбрасывается в атмосферу через шахту, возвышающуюся на 5 м над крышей здания.

5.5.11. Расчет сооружений повторного использования воды.

Принято повторное использование промывной воды фильтров с кратковременным отстаиванием ее в аккумулирующих емкостях, предназначенных для приема залповых сбросов.

На одну промывку фильтра расход воды составляет:

q=F*ω*60*t1=33*15*60*7=208м3

где, t1 – продолжительность промывки, 7 мин;

Следовательно приняты две аккумулирующие емкости по 210 м3 каждая.

Полагая, что повторно используется 80% промывной воды, а 20% воды сбрасывается с осадком в сток, определяем параметры насосной установки:

а) насос для перекачки осветленной воды на очистные сооружения:

где  t – продолжительность перекачки, 30 мин=0,5ч [12, табл.43];

б) насос для перекачки шламовой воды из резервуара в канализацию:

где  t – продолжительность перекачки, 15 мин=0,25ч [12, табл.43];

Для выполнения обеих операций принимаем четыре обнотипных насоса ( три рабочих и один резервный) марки 12Д-19-60 производительностью по 150 л/с, напором 15 м, скоростью                  вращения 1450 об/мин и КПД 0,8.

9.5.12. Песковое хозяйство.

Кварцевый песок, используемый в качестве загрузки фильтра, должен быть очищен от примесей и иметь определенный гранулометрический состав.

В установках пескового хозяйства предусматривается подготовка карьерного песка для первоначальной загрузки фильтров, так и для ежегодной его догрузки в размере 10% общего объема песчаного фильтрующего материала.

Объем песка,загружаемого в фильтры перед пуском станции из восьми фильтров площадью по 33 м2 каждый и высотой фильтрующего слоя 1,2 м составит:

Wn=8*1.2*33=290 м3

Готовая потребность в дополнительном песке (10%-ная догрузка):

Wд=290*0,1=29,0 м3

Принимаем, что в карьерном сырье содержит 55% песка, пригодного для загрузки фильтра.

Тогда потребность в карьерном сырье перед пуском станции будет:

а годовая потребность в песке для его дозагрузки в фильтры:

Песковая площадка принята асфальтированная с размером в плане 26Х20 м.

Глава 6. Водопроводная сеть и водоводы

6.1. Общие сведения

Трассировка водопроводной сети обусловлена выполнением следующих основных правил:

1.  Водопроводная сеть должна равномерно охватывать всех потребителей воды.

2.     Сети водопровода должны иметь возможно наименьшую строительную стоимость, для чего подачу воды в заданные точки необходимо производить по кратчайшим направлениям, с тем чтобы обеспечить наименьшую длину водопроводных сетей.

3.     Водопроводная сеть должна обеспечивать бесперебойность подачи воды потребителям, как при нормальной работе, так и при возможных авариях на отдельных участках.

На территории города главные магистрали водопроводной сети трассируем по основному направлению движения воды. Магистрали соединены перемычками, обеспечивающими перераспределение воды между магистралями при авариях.

Транзитные магистрали предусмотрены для транспортирования воды от точки питания сети к наиболее удаленным ее точкам, а так же в распределительную сеть.

6.2. Расчет водопроводной сети на случай максимального водозабора

6.2.1. Расчетная схема отбора воды.

Водопроводная сеть – кольцевая с водонапорной башней в начале сети; башня располагается на естественной возвышенности на отметке    107,3  м.

Максимальное водопотребление приходится  на  промежуток  времеми  с 21 до 22 часов.  В этот  час  город  потребляет 5,28% от Qсут.мах,  т.е.2238,57 м3/ч = 622 л/с, в том числе предприятия:

Qпр№1 = 162 м3/ч = 45 л/с

Qпр№2 = 208 м3/ч = 58 л/с

Суммарное потребление воды предприятиями:  Qпр = 103 л/с

Тогда расход воды, равномерно распределенного по территории города, составит:

Q = Qрасч – Qпр = 622 – 103 = 519 л/с

Удельный отбор, т.е. отдача воды сетью на 1 м ее длины, определяем по формуле:

где  ∑l – сумма длин участков сети, м.

Путевые расходы воды по участкам сети:

или заменяя их узловыми расходами воды:

где   lузл – сумма длин участков, приходящих к узлу.

Результаты определения узловых расходов приведены в табл. 6.1 и          на рис.6.1.

Узловые расходы воды.

Таблица 6.1

Номер узла Номера участков, примыкающего к узлу Сумма длин участков, примыкающих к узлу Sl

Qузл

Qпр

м л/с л/с
1 1-2,1-5 1375 22
2 2-1,2-3,2-7 2065 33,04
3 3-2,3-8 1190 19,04 45
4 4-5,4-9 1300 20,8
5 5-1,5-4,5-6,5-10 2650 42,4
6 6-5,6-7,6-12 1375 22
7 7-2,7-6,7-8 1315 21,04
8 8-3,8-7,8-14 1615 25,84
9 9-4,9-10,9-16 1925 30,8
10 10-5,10-9,10-11,10-17 2775 44,4
11 11-10,11-12,11-18 1575 25,4
12 12-6,12-11,12-13 1315 21,04
13 13-12,13-14,13-19 1265 20,24
14 14-8,14-13,14-15 1095 17,52
15 15-14,15-20 970 15,52
16 16-9,16-17 1350 21,6
17 17-10,17-16,17-18 2240 35,84
18 18-11,18-17,18-19 2170 34,72 58
19 19-13,19-18,19-20 1825 29,2
20 20-15,20-19 1020 16,32

Итого:

32410

519

103

Всего:

622

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20


ИНТЕРЕСНОЕ



© 2009 Все права защищены.