| |||||
МЕНЮ
| Дипломная работа: Фундаментальні досліди з квантової оптики та їх висвітлення в шкільному курсі фізики
Оскільки фотон рухається у вакуумі зі швидкістю с, то знаменник у формулі (15) перетворюється в нуль. З рівності (14) випливає, що маса фотона скінченна. Це можливо за умови, коли маса спокою фотона дорівнює нулю. Отже, фотон - це особлива частинка, яка істотно відрізняється від таких частинок, як електрон, протон, нейтрон, що мають відмінну від нуля масу спокою. Фотон не має маси спокою і може існувати тільки в русі зі швидкістю c. Імпульс фотона
де
Ряд явищ вказує на те, що світло поводить себе як потік частинок (фотонів). Але не слід забувати, що такі явища, як інтерференція і дифракція світла, можуть бути пояснені тільки на основі хвильових уявлень. Отже, світло має корпускулярно-хвильові властивості (двоїстість): в одних явищах проявляється хвильова природа світла, і воно поводить себе як електромагнітна хвиля, в інших – його корпускулярна природа, і воно поводить себе як потік фотонів. 1.4Тиск світла. Досліди Лебедєва Серед різних дій світла тиск займає особливе місце. Ідея про те, що світло повинно тиснути на освітлювані ним поверхні, була висловлена ще Й. Кеплером (1571-1630), який вбачав у ній пояснення напрямів хвостів комет. Двоїста природа світла значно утруднює наочну інтерпретацію властивостей випромінювання. З іншого боку, нерозривна єдність хвильових і корпускулярних властивостей світла дає змогу глибше зрозуміти і пояснити ряд явищ, зумовлених взаємодією випромінювання з речовиною. З погляду квантової теорії тиск світла зумовлений зміною імпульсу фотонів при поглинанні та відбиванні їх поверхнею тіл. Виведемо
формулу тиску світла на основі квантової теорії. Нехай на поверхню площею
Мал.4 Імпульс
одного фотона частоти V дорівнює
Якщо
поверхня непрозора, а коефіцієнт дзеркального відбивання нею світла Враховуючи, що зміна імпульсу дорівнює імпульсу сили, можна записати
Тоді тиск світла
Добуток
концентрації фотонів п на енергію фотона
У разі
нормального падіння світла (
Якщо
користуватись густиною потоку світлової енергії и =
Мал.5 На основі електромагнітної теорії виникнення тиску пояснюється
так. Нехай на тіло А перпендикулярно до його поверхні падає електромагнітна
хвиля (мал.5). Електричний E і магнітний H вектори світлової хвилі лежать у площині поверхні тіла А. Під дією
сили Отже, результати, одержані на основі квантової і хвильової теорій світла, однакові. У 1900 р. П.М.Лебедєв вперше експериментально виміряв тиск світла на тверді тіла. На основі дослідів він дійшов висновку, що тиск світла на дзеркальну поверхню у два рази більший за тиск на поверхню, що майже повністю поглинає світло. Значення тиску світла, одержане експериментально, узгоджувалося з теоретичними розрахунками з точністю ±20 %. У 1923 р. В.Герлах (1889-1979) повторив дослід Лебедєва і його результати узгоджувалися з теоретичними величинами і точністю ± 2 %. У 1908 р. П.М.Лебедєв виміряв тиск світла на гази. Світловий
тиск досить малий. Так, за межами атмосфери Землі інтенсивність сонячного
випромінювання дорівнює 1400 Вт/м2. Відповідний тиск при нормальному
падінні світла на поверхню, для якої р = 0,5, дорівнює Нерівномірність освітлення поверхонь штучних супутників Землі викликає небажане їх обертання навколо деякої осі. Фокусування лазерного пучка у "пляму" досить малого радіуса дас змогу одержати великі тиски. За їх допомогою можна мікроскопічним частинкам надати прискорення, які в мільйони разів більші за прискорення вільного падіння, а це набуває широкого практичного застосування. 1.5 Ефект Комптока Корпускулярні
властивості світла найбільш переконливо проявляються в явищі, яке називається
ефектом Комптона. Досліджуючи розсіяння рентгенівського випромінювання різними
речовинами, А. Комнтон (1892-1962) у 1923 р. виявив, що в розсіяному
випромінюванні, крім спектральних ліній, яким відповідає довжина падаючої хвилі
Мал.6
де Розглянемо
пружне зіткнення рентгенівського фотона, енергія якого
де Відповідно до теореми косинусів з (мал.6) маємо
Розділимо
рівняння (24) на
При відніманні рівняння (25) від (26) одержимо
Оскільки
де величина
Наявність у
розсіяному промінні спектральних ліній, довжина хвиль яких не зазнала змін,
вказує на те, що деякі рентгенівські фотони розсіюються без зміни енергії. Таке
розсіяння відбувається на електронах, які сильно зв'язані з ядром. При цьому
розсіяння відбувається не на вільному електроні, а на системі електрон – ядро,
маса якої значно перевищує масу електрона т0. З рівняння (28)
випливає, що зміною Результати розсіяння рентгенівських фотонів на електронах також спостерігали на фотографіях слідів у камері ВІльсона. Крім цього, Г.Гейгер (1882-1945) ІX.Бете експериментально довели, що розсіяний рентгенівський фотон і електрон віддачі з'являються одночасно. Розділ 2 Вивчення фундаментальних дослідів з квантової оптики в профільних класах 2.1 Досліди, що послужили основою виникнення хвильової теорії світла Оптика є, ймовірно, тим розділом фізики, в якому вперше були проведені вимірювання. В III ст. до н.е. Евклід вже знав закони видбивання світла від плоского дзеркала, а в II ст. до н.е. Птолемей досліджував заломлення світла, але його досліди дали невірні результати. В сучасному вигляді закон заломлення світла був сформульований В.Снеллиусом (1580—1626). Висновок Снелліуса не зберігся, швидше за все це була теоретична робота. Р.Декарт знов сформулював закон заломлення світла в 1638 р. і привласнив йому ім'я Снелліуса. XVII в. був часом справжнього прогресу оптики. Одним з важливих питань було питання про те, як розповсюджується світло. В дослідах учня Галілея Торрічеллі по вимірюванню атмосферного тиску в 1643 р. з'ясувалося, що можна бачити через верхню частину барометра; це означало, що світло розповсюджується у вакуумі і для його розповсюдження не потрібне матеріальне середовище. В 1669 р. Э. Бартолин (1625-1698) встановив, що деякі кристалічні речовини не підкоряються закону заломлення, в них відбувається розділення променя на два. Християн Гюйгенс, як ми вже знаємо, займався проблемами механіки і оптики. Саме ці розділи фізики зіграли ведучу роль в становленні класичної фізики. Не випадково багато учених займалися одночасно вивченням і механічних, і оптичних явищ. Гюйгенс, захопившися в молодості шліфуванням скла, виготовив лінзи з величезними фокусними відстанями (більше 60 м), удосконалив конструкцію телескопа і проводив астрономічні спостереження. Найбільшим внеском Гюйгенса в розвиток фізики була розроблена ним теорія світла. Свої переконання на світло Гюйгенс неодноразово представляв на засіданнях Паризької академії наук і в 1690 р. висловив їх в роботі «Трактат про світло». Гюйгенс сформулював принцип, який тепер носить його ім'я. Згідно цьому принципу світло — хвильове явище, і кожну точку середовища, до якого дійшла світлова хвиля, можна вважати джерелом вторинних хвиль, а положення хвильового фронту визначається огинаючій вторинних хвиль в певний момент часу. Вважаючи світло подовжніми хвилями, Гюйгенс пояснив явище заломлення світла. Ньютон же вважав, що світло є потоком корпускул, що рухаються за інерцією. Таке уявлення дозволило пояснити прямолінійне розповсюдження світла. Складнощі виникли при поясненні подвійного променезаломлення в кристалі ісландського шпату. Це явище не можна було пояснити, виходячи з припущення про те, що світло є подовжніми хвилями, як вважав Гюйгенс. Для двох частин однієї і тієї ж подовжньої хвилі речовина не могла володіти різними показниками заломлення. Різне заломлення світла кристалом (розділення пучка світла на два після проходження через кристал), виходячи з корпускулярних представлень Ньютона, можна було пояснити, якщо припустити, що частинки світла анізотропні, як магніти, і кристал їх сортує. Ф. Грімальді, намагаючись з'ясувати, до якого ступеня можна довести різкість тіні, досвідченим шляхом встановив, що при освітленні шпилькового отвору тінь розмивається, з'являються ряди кольорових смуг. Досвід їм проводився з сонячним світлом в затемненій кімнаті. Результати дослідів були опубліковані в 1665 р. — через два роки після смерті Грімальді. Ньютон не надав значення дослідам Грімальді, хоча в них фактично було відкрито явище дифракції світла, що неспростовно доводило його хвильові властивості. Ефект обгинання світлом перешкод перевідкриті Р.Гуком в 1672 р. Цими дослідами Ньютон зацікавився і провів досліди за допомогою звужуючої щілини, але із якихось причин залишив їх незавершеними. Погляди Ньютона на властивості світла не були однозначними. Ньютон допускав обгинання світлом перешкод. Виконавши експеримент на установці, яка тепер носить назву «кільця Ньютона», він фактично спостерігав інтерференцію світла. Ньютон висунув припущення про те, що корпускули викликають коливання в сітківці ока, створюючи різні колірні відчуття: «найкоротші» — відчуття фіолетового кольору, «найдовші» — червоного. Віддаючи перевагу корпускулярної теорії світла, Ньютон бачив ширше сучасників. Корпускулярні уявлення були лише частиною ньютонівських поглядів на світлові явища. Ньютон визнавав і досліджував також і хвильові властивості світла. Таким чином, ми бачимо, що в поглядах Ньютона на природу світла був присутній корпускулярно-хвильовий дуалізм — визнання одночасного існування у світла і корпускулярних, і хвильових властивостей. В кінці XVIII в. виникли сумніви в справедливості корпускулярної теорії: спостереження Грімальді вдалося пояснити на основі хвильових уявлень. О.Ж.Френель створив повну хвильову теорію світла. Прихильник його поглядів Д.Араго провів разом з Френелем безліч дослідів. Зокрема, Френель і Араго провели експеримент, який дозволив знайти в центрі геометричної тіні світлу пляму, що виходило з хвильової теорії світла. Хвильові властивості світла могли бути знайдений в явищах інтерференції і дифракції. Ці явища нерозривний пов'язані один з одним. Відмінність між ними полягає в тому, що в явищі дифракції бере участь один пучок світла, а в явищі інтерференції — два і більше. Т.Юнг зрозумів, що не можна чекати інтерференцію від двох незалежних джерел світла, і в 1807 р. виконав досвід по виявленню не тільки дифракції, але і інтерференції світла. Початок XIX ст. можна вважати часом, коли перемогла хвильова теорія світла. В кінці XIX — початку XX в. у фізику прийшли квантові ідеї. Завдяки дослідженням теплового випромінювання, явища фотоефекту і цілого ряду інших явищ стало ясно, що світлу властиві не тільки хвильові, але і корпускулярні властивості. Відродилися в певному значенні ідеї Ньютона про корпускулярні, переривисті властивості світла. Проте відродження цих ідей не було поверненням до уявлень XVII в. Згідно квантовим ідеям світло одночасно володіє властивостями і хвилі, і частинки, не будучи ні тим, ні іншим. Світло — діалектична єдність переривчастого і безперервного, частинки і хвилі. Він володіє суперечливими властивостями, і ця суперечність зв'язана з тим, що людина як істота макроскопічна неминуче намагається перенести свої уявлення про оточуючому його макросвіт, зокрема уявлення про «морські хвилі і тенісні м'ячі» (по образному виразу Р.Фейнмана), на мікрооб'єкти. Подвійність властивостей світла отримала назву корпускулярно-хвильового дуалізму. В науці затвердилася ідея, неявно присутня в переконаннях Ньютона ще в XVII в. Досліди Ньютона по дисперсії і інтерференції світла Дослідження в області оптики І.Ньютон почав вести, ще будучи студентом, а популярність як учений-фізик придбав після 1668 р., коли їм була виготовлена модель телескопа-рефлектора. В 1673 р. на засіданні Лондонського Королівського суспільства була представлена праця «Нова теорія світла і кольорів», в якому Ньютон описував свої досліди по дисперсії світла. Погляди Ньютона на світлові явища, як вже наголошувалося, не були однозначними. Намагаючись з'єднати корпускулярні і хвильові уявлення, Ньютоном враховані корпускулярним уявленням, беручи активну участь в дискусії з питання про те, що таке світло, з Р.Гуком. Підсумок своїх досліджень в області оптики Ньютон опублікував тільки в 1704 р. — після смерті Гука — в творі «Оптика». В 1666 р. И. Ньютон провів досліди з скляними призмами і відповів на питання: «Яка фізична властивість дозволяє світлу створювати такі прекрасні відчуття, як колір?» Результати цих дослідів були опубліковані в 1672 р. В цій роботі Ньютон писав про те, як він експериментально встановив, що проміння, відмінне за кольором, по-різному заломлюється скляною призмою. Досвід полягав в наступному. Шматок щільного паперу з паралельними сторонами був розділений лінією, перпендикулярною паралельним сторонам. Одна частина шматка паперу була яскраво-червоною, інша яскраво-синьої. Цей шматок паперу розглядався через товсту скляну призму із заломлюючим кутом в 60°. Якщо призма розташовувалась переломним кутом в низ, то розфарбований папір через призму здавався піднятою, причому синя частина здавалася піднятою більше, ніж червона. Якщо ж призма розташовувалась заломлюючим кутом вгору, то частини паперу здавалися опущеними, і синій шматок здавався зміщеним вниз дещо більше, ніж червоний. Так було показано, що світло, що викликає відчуття синього кольору, заломлюється сильніше за світло, що викликає відчуття червоного кольору. Далі в роботі йшлося про те, що до складу сонячного (білого) світла входить проміння різних кольорів — проміння, по-різному що заломлюються скляною призмою. Досліди проводилися в сонячний день в темній кімнаті. Крізь виконаний у віконниці невеликий отвір (біля V3 дюйма) в кімнату проникало світло. Світло прямувало на призму, і на протилежній від вікна стіні кімнати виходило подовжене зображення Сонця з веселковим чергуванням кольорів. Ця веселкова смужка була спектром білого світла. Ньютон ввів сім основних кольорів спектру — червоний, оранжевий, жовтий, зелений, голубий, синій, фіолетовий. Спектр сонячного світла був безперервним, і кольори плавно переходили один в одного. |
ИНТЕРЕСНОЕ | |||
|