рефераты бесплатно
 

МЕНЮ


Дипломная работа: Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала

Набухающий крахмал - новый стабилизатора различных пищевых продуктов, вырабатывается без добавок и является экологически чистым продуктом.

Изготовитель гарантирует соответствие качества крахмала при соблюдении потребителем условий транспортирования и хранения.

Гарантийный срок хранения набухающего крахмала - два года со дня выработки.

Крахмал кукурузный ГОСТ 7697-82

Крахмал кукурузный получается из зерна кукурузы.

Применяется в различных отраслях пищевой промышленности, в производстве соусов, пудингов. Его используют при выпечке булочных и кондитерских изделий в тех случаях, когда нужно придать большую мягкость и нежность продукту (вафельные стаканчики для мороженного, печенье, пекарские смеси и т.д.).

Кукурузный крахмал используют в кондитерской промышленности при отливке мягких конфет и корпусов шоколадных конфет. Этот крахмал широко используют в технических целях в бумажно-целлюлозном производстве, в текстильной и медицинской промышленности. Служит сырьем при производстве патоки и декстрина.

Для производства крахмала должна применяться производственно-кормовая кукуруза по ГОСТ 13634-91.

По органолептическим и физико-химическим показателям кукурузный крахмал должен соответствовать требованиям, указанным в таблице 2.5.:

Гарантийный срок годности крахмала - 2 года со дня выработки при соблюдении условий хранения и транспортирования.

Модифицированные набухающие крахмалы (ОАО "ККЗ", КБР, Майский район, ст. Александровская)

На заводе вырабатывается три вида модифицированных крахмалов:

1.  "Крахмал модифицированный для бурения".

2.  "Крахмалит".

3.  "Крахмал пищевой набухающий".

Получение модифицированных крахмалов проводится на вальцовых голландских сушилках, которые обогреваются паром при определенном давлении. Крахмальная суспензия определенной плотности подается на барабан вальцовой сушилки и, превратившись в клейстер, высушивается в тонком слое. Полученная пленка счищается ножом и поступает в дробильную установку, где через определенные отверстия в сетке выдувается в бункер для расфасовки в мешки.

Модифицированные крахмалы набухающие, прошедшие влаготермическую обработку, приобретают новую структуру, т.е. происходит расщепление полисахаридов крахмальных зерен.

Полученные расщепленные крахмалы обладают способностью набухать в холодной воде и полностью или частично переходить в растворимое состояние.

Технология выпуска этих трех видов модифицированных крахмалов практически одинакова, только зависит от плотности крахмальной суспензии, от химических добавок и от сетки просева.

1.  "Крахмал модифицированный для бурения" - это технический крахмал. Для его получения в крахмальную суспензию 40% С.В. добавляют соль-окислитель, алюмокалиевые квасцы (KAl (SO4) 2) · 12H2O, перемешивают в реакторе и подают на вальцовую сушилку. Полученная пленка направляется в дробилку с диаметром сетки 4 мм. Этот крахмал применяется, как стабилизатор глинистых растворов при бурении скважин в газовой и нефтеперерабатывающей промышленности.

2.  "Крахмалит" - это также технический крахмал. Вырабатывается по той же технологии, только без добавок, но с повышенной плотностью крахмальной суспензии до 42-44% С.В. и диаметром ячейки сетки 5 мм. "Крахмалит" применяется в литейной промышленности, как формовочный материал при изготовлении паст, т.е. используется как пластификатор и удерживатель избыточной влаги формовочных смесей при работе на автоматических линиях для отливки блоков автомобильных двигателей.

3.  "Крахмал пищевой набухающий" - это пищевой крахмал. Вырабатывается также без добавок, но с пониженной плотностью крахмальной суспензии до 36-38% С.В. и просевом через сито с диаметром ячейки 3 мм. Этот крахмал применяется в различной пищевой промышленности, как добавка для сгущения майонезов, кетчупов, томатных паст, повидл, мороженного и т.д., применяется для улучшения качества муки вместо клейковины (на 1 тн муки 5 кг). Этот крахмал используется для производства пудингов быстрого приготовления, для выработки безбелковых продуктов питания - хлеба, макарон и т.д. Также широко применяется для брикетирования корма; агломерации различных продуктов - порошка, руд, угля и т.д.

Качество этих трех видов модифицированных крахмалов оценивается по их способности к набуханию, влагоудержанию и стабилизирующей способности вязкости и растворимости и регламентируется техническими условиями на каждый вид продукции.

Таблица 2.5

Наименование показателей

Норма для крахмала

высший сорт

первый сорт

Внешний вид Однородный порошок
Цвет белый, с желтоватым оттенком
Запах Свойственный крахмалу, без постороннего запаха
Массовая доля влаги, % не более 13 13

Массовая доля общей золы в пересчете на сухое вещество, % не более,

в том числе:

золы (песка), нерастворимой в 10% соляной кислоте (в крахмале, предназначенном для пищевых целей), % не более

0, 20

0,04

0,30

0,06

Кислотность расхода 0,1 н. раствора NaOH на нейтрализацию 100 г сухого вещества см 3, не более

20 25
Массовая доля протеина в пересчете на сухое вещество, % не более 0,8 0,008

Массовая доля сернистого ангидрида (SO2), % не более

300 500
Примеси других видов крахмала не допускаются

Остаток после ситования 1 дм3 суспензии, содержащей 100 г крахмала, через шелковое сито № 67 или капроновое № 73 в пересчете на сухое вещество, крахмала, % не более

Цветная реакция с йодом - -
2.2 Приготовление образцов

Переработку полиэтилена и композиций осуществляли экструдированием на лабораторном одношнековом экструдере фирмы "Betol" (Великобритания) при температуре 190°C.

Пленки ПЭ и композиций на основе полиэтилена и крахмала готовили методом прессования под давлением согласно ГОСТ 16338-85 при температуре 190°C и давлении 250 кгс см2. Образцы для измерения деформационно-прочностных свойств с размерами 100 ´10 ´ 1 мм (ГОСТ 25.601-80) получали также методом прессования при температуре 190°C и давлении 250 кгс/см2. Фиксация формы изделия происходит в результате охлаждения в прессформе под давлением до комнатной температуры.

2.3 Измерения показателя текучести расплава

Показатель текучести расплава (ПТР), характеризующий реологические свойства расплавов ПЭ-273 (нестаб.) и его композиций с крахмалом определялся на автоматическом капиллярном вискозиметре типа ИИРТ-М при температуре 463 0К и нагрузках 2,16 и 21,6 (ГОСТ 11645-73), с использованием автоматических весов ВЛР-200.

2.4 Испытание на разрыв. Изучение деформационно-прочностных свойств

Изучение деформационно-прочностных свойств ПЭ-273 (нестаб.) и его композиций проводят на образцах в виде полосок (ГОСТ 25.601-80) с размером 100 ´ 10 ´ 0,1 мм. Полоски закрепляют в плоских зажимах разрывной машины модели ZMGi - 250 и растягивают при постоянной скорости взаимного перемещения захватов 10 мм /мин при комнатной температуре и нагрузке 50 кг (ГОСТ 17.316 - 71).

Показатель прочности полимера выражается через напряжение при растяжении и вычисляется по формуле:

, (2.1.)

где F - сила, Н;

S-исходная площадь сечения на которое действует сила, м2

По показателю прочности при растяжении и деформации при разрыве можно рассчитать значение модуля упругости Е:

, (2.2.)

где sр - разрывное напряжение, Мпа;

ε - деформация, %.

2.5 Диэлектрические свойства

Установлено, что даже незначительные изменения в химической и физической структурах полимера, особенно аморфно-кристаллических, заметно отражаются на электрических свойствах. Наиболее чувствительной характеристикой является tg d. Эта характеристика достаточно тонко реагирует на изменения химической структуры, связанные с образованием различных кислородсодержащих групп, наличие которых указывает на разрыв макромолекул. [ 116,120].

Диэлектрические характеристики полимеров и их композиций исследованы методом диэлектрических потерь. Исследования проводили с помощью переменного моста переменного тока с цифровым отсчетом марки Р-5058 при частотах 103 и 104 Гц при температуре 293 0К. Погрешность в измерениях тангенса угла диэлектрических потерь не больше 5%.

2.6 Исследование ИКС

ИК - спектры исследуемых полимеров были получены на ИК-спектрофотометре "Spekord 75 JR" (Германия) при комнатной температуре. В качестве образцов использованы пленки толщиной 0,05-0,07 мм, полученные методом прессования согласно условиям ГОСТ 16338-85.

2.7 Исследования сканирующей зондовой микроскопии

Исследования сканирующим зондовым микроскопом Solver Pro проводились сканированием образцов. Образец устанавливается непосредственно на сканер и перемещается вместе с ним относительно зонда. Размер образца до 40 * 10 мм, минимальный шаг сканирования - 0,0004 нм. Позицирование образца - 5 * 5 мм; диапазон перемещения - 5 мкм. Метод измерения - полуконтактный.

2.8 Методика рентгеноструктурного анализа

Принцип действия дифрактометра ДРОН-6 основан на дифракции рентгеновских лучей от атомных плоскостей кристаллической решетки исследуемого вещества.

Полученные рентгенограммы идентифицируются, используя картотеку эталонных образцов (PDWIN). Выявление фаз осуществлялось сравнением полученного ряда межплоскостных расстояний с табличными значениями [127,128]. Сопоставление (в пределах ошибки эксперимента) опытных и табличных значений межплоскостных расстояний и относительной интенсивности линий позволили однозначно идентифицировать полученную фазу.

Рентгенофазовый анализ образцов синтезированных соединений проводили на рентгеновском дифрактометре ДРОН-6.0 на медном Ka - излучении с длиной волны 1,54051А. Съемка велась в интервале углов 2 q - 10¸75° с заданным шагом 2° в минуту при точности измерения углов дифракции 0,005 градуса. Для уточнения параметров решетки отдельные отражения были пересняты при скорости 0,5°/мин. Время экспозиции 1 сек.

2.9 Исследование воздействия ультрафиолетового излучения на полученные композиции

Ускоренные испытания малой длительности проводились в устройстве для облучения (везерометре) согласно ГОСТ 11279.2-83. В везерометре образцы в виде пластинок устанавливают на наружной стороне вертикального цилиндрического барабана, вращающегося вокруг ультрафиолетовой лампы. Облучение образцов происходит при температуре 40 0С и длине волны l³300нм. Известно [117], что облучение в течение 100ч в везерометре эквивалентно приблизительно одному году экранирования в природных условиях. В везерометр устанавливались образцы в виде полосок размером 100*10*1мм. Изменение физико-химических характеристик исходного полиэтилена и композиций на его основе наблюдали в течение 12 суток (288 часов).


2.10 Исследование поведения композиций при биоразложении в почве

Биоразложение в почве определялось при выдерживании полученных прессованных образцов в почве на глубине 25 см, в течении 42 суток. Тип почвы: серые лесные и светло-серые лесные (наиболее распространенные на территории г. Нальчика). Предварительно были измерены почвенные характеристики: рН (водная вытяжка) = 6,5; рН (солевая вытяжка) = 6; гумус = 3,5%; емкость поглощения 25-30 мг-экв/100 г почвы.

Затем проводилось изучение реологических и деформационно-прочностных характеристик полученных композиций.


Глава III. Обсуждение результатов

Анализ литературных данных позволяет заключить, что при выборе конкретных полимерных структур, которые могли бы быть использованы для получения биоразлагаемых пленок, необходимо исходить из следующих принципов:

Ø  Полимер должен быть гидрофилен и деструктировать под действием внешних факторов, например подвергаться гидролизу;

Ø  Продукты гидролиза должны бить подобны природным соединениям; так 6-аминокарбоновая кислота, которая образуется при при гидролизе полиамидного волокна, может использоваться микроорганизмами в качестве источника углерода и азота;

Ø  Элементный состав полимера должен быть сбалансирован, т.е. соотношение элементов в полимере должно соответствовать их содержанию в клетках микроорганизмов, в частности, соотношение углерода и азота должно быть 1: 10;

Ø  Полимер не должен содержать элементов групп или фрагментов, которые при освобождении их в окружающую среду оказывали токсическое воздействие на живые организмы, в том числе микроорганизмы; нежелательно если полимер содержит циклические, а тем более полициклические или гетероциклические фрагменты;

Ø  Нежелательно, чтобы образующиеся при деструкции продукты вступали в химические реакции с органическим веществом почвы, в первую очередь с гумусом [110].

Поэтому целью данной работы является получение и исследование смесей на основе полиэтилена (ПЭВП) и кукурузного крахмала, которые можно экструдировать и перерабатывать в профилированные изделия.

Выбор кукурузного крахмала определен наличием его производства в республике (ОАО "ККЗ", КБР, Майский район, ст. Александровская). Характеристика выпускаемых видов крахмала и способ производства представлена в экспериментальной части работы. Предварительные испытания с различными видами крахмала позволили остановиться на техническом модифицированном крахмале - крахмалите (ТУ-9187-144-00008064-97) [125]. Следует отметить, что, несмотря на предварительную подготовку крахмала в процессе исследования, приготовить удалось смеси, содержащие от 1,5 до 30 масс. % крахмала, пластифицированные глицерином (на 100 грамм смеси - 10 мл глицерина). Композиции готовились из двух партий и были захоронены в двух различных типах почв, наиболее характерных для территории г. Нальчика (серые лесные и светло-серые лесные). Так как, по своим основным параметрам эти два типа почв имеют практически одинаковые характеристики, а при исследовании реологические и физико-механические показатели двух используемых нами партий полиэтилена и крахмала совпадают, то на обсуждение выносятся результаты, полученные при захоронении композиций и исходного полиэтилена в серые лесные почвы. Полученные композиции после определения показателя текучести расплава представляют собой твердый белый (иногда серый или желтоватый) продукт с тонкой пенообразной структурой. Из полученных экструдированных образцов при прессовании образуются прочные эластичные пленки.

3.1 Исследование реологических и физико-механических свойств исходного ПЭ-273 и композиций на основе ПЭ-273+крахмал

Исследование реологических и физико-механических свойств полученных композиций представлены в табл.3.1.


Таблица 3.1. Физико-механические свойства прессованных образцов композиций на основе полиэтилена и крахмала.

Состав композиций, %

при разрыве

поли-этилен крахмал
1 100 0 6,36 0,11 36,3 >500
2  98,5 1,5 17,57 0,30 17,7 35
3 97 3 34,87 0,58 17,7 53
4 95 5 45,93 0,77 17,7 27
5 93 7 37,94 0,63 15,1 15
6 90 10 31,5 0,53 10,8 9
7 85 15 17,06 0,28 16,7 12
8 80 20 36,36 0,61 12,3 19
9 70 30 43,02 0,71 Настолько хрупкая, что разрушается без внешнего воздействия

Страницы: 1, 2, 3, 4, 5, 6, 7


ИНТЕРЕСНОЕ



© 2009 Все права защищены.