рефераты бесплатно
 

МЕНЮ


Дипломная работа: Паливо для карбюраторних двигунів. Підвищення октанового числа бензину

При цій обробці емульсії на виході апарату являє однорідну монодисперсну з розміром частин 0,1…0,4 мкм.

Підвищення або зниження тиску за апаратом не буде відмічатися на продуктивності апарату. Це пояснюється надзвуковим режимом витікання емульсії, так як максимальна швидкість переміщень малих збурень у середовищі неможливо бути швидкості звуку у ній і переміщуватися у верх по потоку.

Гідродинамічне випромінювання перетворює частину енергії турбулентної затопленої струї рідини в енергію акустичних хвиль. Робота гідродинамічного випромінювача обумовлена на генеруванні збуджень в рідкому середовищі у вигляді деякого поля швидкостей і типів при взаємодії витікаючої з сопла струї з перешкодою відповідної форми і розмірів, або при примусовому перемінному витіканні струї. Ці збудження утворюють зворотну дію на основу струї у сопла, за рахунок встановлення автоколивального режиму. Механізм випромінювання звуку збудженнями може бути різним залежно від конструкції гідродинамічного випромінювача, яка принципово відрізняється від конструкції газоструйних випромінювачів для повітряного середовища, хоча гідродинамічні випромінювачі називають рідинними свистками. [7]

Гідродинамічний випромінювач за рахунок пульсації кавітаційної області, який створився між соплом і перешкодою. Основні елементи такого випромінювача являється конусно-циліндричне сопло і перешкода - відбивач і резонансна коливна система у вигляді стержнів або у вигляді циліндра із профрезерованими вздовж пазами. Кращими в енергетичному відношенні являються вгнуті відбивачі у вигляді лунки, яка забезпечує утворення кавітаційної області, вміст якої з відповідною частотою виштовхується із зони сопло-відбивач. Для збудження інтенсивних коливань необхідно відповідне співвідношення між діаметром лунки відбивача і діаметром сопла.

Пульсування кавітаційної області створюють змінні поля швидкостей та тиску, які збуджують в стержнях згинаючи коливання на їх власній частоті, що робить внесок у випромінювання, збільшує його інтенсивність. [7]

Диспергування ультразвукове тонке роздрібнення твердих речовин або рідин, тобто перехід речовини в дисперсний стан з утворенням поля під впливом ультразвукових коливань. [3] Диспергуванням називають роздрібнення твердих тіл в рідинному середовищі. Диспергування рідини в газах (повітрі) називають розпиленням, а диспергірування рідини в рідині емульсією. Ультразвукове диспергірування дозволяє отримати високодисперсну (середній розмір частинок мкм і частина мкм), однорідна і хімічно чиста суспензія.

Для утворення ультразвукового диспергірування необхідна кавітація. Роздрібнення речовини відбувається під дією ударних хвиль, виникаючих при захлопуванні кавітаційних полостів. Диспергірування починається при інтенсивності ультразвуку, перемішуючий деяке порогове значення. Величина якого складає декілька Вт/см2 і залежить від кавітаційної міцності рідини, а також від характеру і величини сили взаємодії між окремими частинами.

Кавітація яка утворюється в кавітаторі супроводжується утворенням в рідині пульсуючих бульбашок заповнених паром, газом або їх сумішшю [7]. Розрізняють акустичну кавітацію і гідродинамічну, у нашому випадку гідродинамічна, яка обумовлена сильним локальним пониженням тиску в рідині в наслідок великих швидкостей течії. Для ідеально чистої рідини імовірність спонтанного утворення бульбашок стає помітною лише при достатньо великих розтягуючи навантаженнях для води теоретична величина 1,5-108 Па.

Кавітація виникає в результаті втрати стійкості зародишів потрапляючи в область пониженого тиску в звуковій хвилі, і швидкого їх росту. Процес розширення бульбашок зародишів обумовлений рядом ефектів:

тиском газа і пару в бульбашці;

перевищуючи тиск навколишньої рідини;

дифузії газу в бульбашці із рідини;

випаровуванням рідини і збільшення ваги пари в бульбашці;

коагуляції зародишів.

При підвищенні звукового тиску бульбашка стискається і відбувається дифузія газу із бульбашки в рідину. Кількість продифундіровавшогося газу пропорційна площі поверхні бульбашці, яка в стадії розширення більша, ніж в стадії стиску. В силу повної компенсації дифузійних потоків не відбувається: маса газуё, заповнюючого бульбашку заповнена в бульбашці в процесі її розширення, перевищує масу газу, звільнившогося із бульбашки при її стиску, так, що в цілому за період кількості газу в бульбашці збільшується. Це явище називається випрямленою дифузією (спрямованою дифузією), це викликає ріст бульбашки в полі змішаного тиску.

При пульсувані парових бульбашок внаслідок неадіабатичності процесу зміни стану речовини в бульбашках виникає енергія, яка приводить до нагріву і випаровуванню рідини в бульбашку.

Динаміка кавітаційних бульбашок. Виникаючи у звуковому полі кавітаційної порожнини інтенсивно пульсують. Пульсації порожнин можуть супроводжуватися сильними змінними сферичними формами і навіть подрібненням бульбашок, пульсуючи, бульбашки рухаються поступово і інколи зливаються одна з одною.

Ступінь розвитку кавітації, характерний його протіканням і вплив може змінитися при варійовуванні газових в рідинні, гідростатичний тиск, що відкриває здатність керування кавітаційними явищами.

В кавітаційній області виникають міцні гідродинамічні збудження у вигляді сильних імпульсів стиску (мікроударних хвиль) і мікропотоків створившимися пульсуючими бульбашками. Крім того, захлопування бульбашок супроводжується сильним локальним розігрівом речовини, а також виділення газів які містять атмосферні і іонізовані компоненти. В результаті цього речовина в кавітаційній області підлягає інтенсивним впливам.

Якщо ступінь розвитку кавітації такий, що у випадку моменту часу виникає і захлопується велика кількість бульбашок, то вибух ними акустичного випромінювання проявляється у вигляді сильного шуму із суцільним спектром в порожнині від декількох сотень Гц до сотень і тисяч кГц. На фоні суцільного спектру кавітаційного шуму спостерігається окрема дискретна субгармонійна відражаюча частина спектру поля, яка викликає кавітацію.


4. Методика експериментального дослідження

1. Установка призначена для отримання сумішних бензинів в умовах АЗС, АТП, у середині господарства, сховищах, фермерських господарств.

2. Установка може працювати як у закритих приміщеннях, так і на відкритих територіях. Існує варіант пересувної установки на базі автомобіля.

Загальні технічні дані:

тиск рідини при вході у дозатор, 7,20 м. рід. ст.;

допустима вакуумметрична висота втягування дозатора, 6,0 м. рід. ст.;

загальна подача домішку дозатором при трубопроводі для її підводу 0 11/2’’, м3/с 0,6·10-3;

тиск рідини через кавітатор 95,0 м. рід. ст;

об’ємна подача рідини через кавітатор при трубопроводі 0 11/2’’, м3/с 6,2·10-3;

режим працювання, безперервний;

вага дозатора, 12 кг;

вага кавітатора, 15 кг;

габаритні розміри дозатора, 95х183 мм;

габаритні розміри кавітатора, 164х190 мм;

з’єднання дозатора-ежектора насосом живлення здійснюється трубопроводом 021/2’’;

з’єднання дозатора із баком, який містить присадку, трубопроводом 011/2’’;

робоче положення кавітатора та дозатора горизонтальне.

Зміна продуктивності установки може досягтись завдяки додатково встановлених кавітаторів, паралельно підключених та двох розподільних баків. Будова установки.


Рисунок 4.1 Схема установки для приготування сумішевих бензинів

Установка для отримання сумішного бензину складається з двох баків 1, 2 для присадки та низько октанового бензину, насосу живлення 5, електродвигуна 3, муфти 4, дозатора ежекторного типу 9, гідродинамічного кавітатора 10, запірних кранів 6, 7, 12, 14, манометра 8,13 та ємкості для готової продукції 11.

Дозатор ежекторного типу, в якому рідина перемішується із зовнішнім потоком низькооктанового бензину.

Він складається: з корпусу1, сопла 3, розширювача 5, регулювальної гайки 2, штуцера 4. (рис.4.1)

Рисунок 4.1 Дозатор ежекторного типу

Кавітатор призначений для кінцевого змішування та диспергування рідинних присадок (ВКД). Конструкція кавітатора показана на рис.4.2

Кавітатор складається: корпус 1, в якому сосно розміщені сопло2. відбивач 3.

Відхилення вісі сопла від вісі відбивача не повинно перевищувати 0,05 мм.

Рисунок 4.2 Гідродинамічний кавітатор

Робота установки.

Низько октановий бензин з бака 2 за допомогою насоса 5 подається в магістраль α при відкритому 6,7,14, краном 6 регулюється необхідний тиск в магістралі α, сировина поступає в дозатор ежекторного типу, який встроєний в нагнітаючу магістраль α, проходячи через сопло 3 (мал.4.1) ввернуто в корпус 1 в зоні А між соплом і розширювачем 5, створюється розрідження в зв’язку з цим з ємкості 1 (лист 2) при відкритому крані 14 дозується ВКД, змішавшись в зоні А суміш бензину ВКД потрапляє через трубопровід до гідродинамічного кавітатора 10, рис. (4.2).

В кавітаторі під дією ультразвукових коливань проходить кінцева змішування компонентів (бензину та ВКД). Далі готовий продукт виходить до ємкості 11.

4.1 Розрахунок гідродинамічного диспергатора для отримання сумішного бензину

Результати модернізації:

витрата рідини Q = 30 л/хв (в СU Q = 30/6000 = 5,0·10-4 м3/с);

тиск на вході Р = 15 атм. (в СU Р = 1,5 МПа).

Приводимо розрахунок диаметра сопла, мм:

d = , (3.11)

де ρ - щільність рідини, кг/м3;

φ - коефіцієнт витікання = 0,85.

d = ,

Довжина циліндричної частини сопла, мм

l = 5.4·d, (3.12)

l = 5.4·3,5 = 19 мм

Довжина кінцевої частини сопла, мм

l1 ≈ l, (3.13)


Вхідний діаметр конуса, мм [6]

d1 = 1,27·d1 (3.14)

d1 = 1,27·35 = 4,5 мм

Діаметр відбиваючої лунки [6], мм

D = 2·d1 (3.15)

D = 2·3,5 = 7 мм.

Як показано в [5] оптимальний профіль лунки близький до сегменту сфери, причому кут виходу струменя L = 350…. .400. з цих міркувань розрахунок глибини і радіус заокруглення лунки буде розраховуватися, мм.

R = , (3.16)

R =

Глибина заокруглення буде розраховуватися, мм

h = R (1-cos α), (3.17)

h = 7 (1-cos 400) = 7 (1 - 0,77) = 1,6 мм

Для стійкого звукоутворення потрібно об’єм робочої камери і яка розраховується за формулою [6], м3

Vм = 50000·d3, (3.18)

Vм = 50000· (3,5·10-3) 3 = 0,002 м3


Конструкція випромінювача повинна задовольняти соосність сопла і відбивача у межах 0,02 мм, регулювання зазору L повинно проводитися у межах від 2 до 3 мм.

Частоту коливань, проводимо розрахунок за емпіричною формулою [4], кГц;

f = 3,3/d, (3.19)

f = 3,3/3,5 = 0,94 кГц

Рисунок 4.3 Гідродинамічний диспергатор

4.2 Методика проведення випробувань

При проведенні експлуатаційних випробувань визначають фізико-хімічні характеристики (в тому числі антидетонаційні властивості по двигунному методу ГОСТ511 і по досліджуваному методу ГОСТ 8226) всіх сортів змішаного бензину і більшого числа сортів товарного бензину, використання яких проводять випробовування автомобілів. При цьому визначають фізико-хімічні характеристики зразків змішаного і товарного бензинів згідно технічних умов ТУУ00149943.801-98. бензини автомобільні з підвищеним кінцем кипіння і ГОСТ2048-77 (тільки для товарних бензинів).

Фізико-хімічна характеристика сортів змішаного і товарного бензину А-80 і А-92 визначається стандартними методами згідно вимог ТУУ001149943.501-98 і ГОСТ2048.

Антидетонаційні властивості сортів змішаного і товарного бензину визначається з використанням аналізатора детонаційної стійкості бензину розробленого Державтотранстгідропроект і атестованого УКРЦСМ. Зміна детонаційної стійкості сортів палива використовується безмоторною установкою згідно методам ГОСТ511: ГОСТ8336 (по моторним і досліджувальним методами). Результати визначаються фізико-хімічними і антидетонаційними властивостями сортів змішаного і товарного бензинів А-80 і А-92 заносять в таблицю.

В процесі експлуатаційних випробувань періодично (через 2000 км пробігу) проводиться аналіз моторних мастил.

Аналіз моторних мастил проводять згідно стандартної методики спеціальної методики згідно з УКРНРИНП "Масла".

Перед кожним контрольним стендовим випробуванням автомобіля вимірюється компресія в циліндрах двигуна з використанням компреси метру 0-324 послідовно з 1-го по останній циліндр. Вимірювання в кожному циліндрі проводять 3 рази. Якщо відповіді вимірювань мають різницю більшу як ±0,02 МПа вимірювання повторяють.

За результати вимірювань застосовуються середньо арифметичне трьох вимірів, округленого до 0,01 МПа. Компресія визначається на холодному і гарячому двигуні при чіткому дотримані температури двигуна по температурі охолодженої рідини і моторного мастила при кожному наступному випробувані. [4]

Контрольні стендові випробування автомобілів при роботі на змішаному і товарному бензині проводять на стенді діагностики тягових характеристик автомобілів методом 4819. при цьому визначають тягові динамічні і економічні показники автомобілів. Тягові показники оцінюються по силі тяги на колесах на бігових барабанах стенда, Рк [кН]. Динамічні показники по часу розгону автомобіля Трозг, [с], від 40 до 70 км/час. Економічні показники по концентрації ВГ моноокису вуглецю СО%, і вуглеводів Сш Нn. В режимах максимального навантаження при швидкості автомобілів ЗИЛ-431410 Vа - 50км/год і ГАЗ-2410 Vа = 60км/год, визначається:

максимальна сила тяги Рк, кН;

рівень концентрації СО% Сш Нn.

Такі самі показники визначаються (крім Рк) в режимах часткового завантаження при Vа = 60км/год і Рк = 1,0 кН ЗИЛ - 431410, Рк = 0,4 кН ГАЗ-2410.

В режимах холостого ходу двигуна визначається концентрація СО% Сш НnРРТ в ШГ. При цьому визначається відповідні економічні показники вимогам ГОСТ12203-87.

Визначення переліку (вмісту) шкідливих речовин визначаються при регулювальній системі запалювання, які відповідають роботі змішаному і товарному бензину А-80 (ЗИЛ-431410) і А-92 (ГАЗ-2410).

Оцінка фактичних антидетонаційних характеристик змішаного бензину в умовах експлуатації, вплив змішаного палива на пускові характеристики автомобіля, безвідмовність роботи двигуна, стабільність регулювань паливної апаратури, технічний стан паливної апаратури, в тому числі гумово-технічних виробів, які входять до складу, проводиться по методам лабораторії ДЕЕЕПі СВ при проведені контрольно стендових випробувань автомобілів, а також при контрольних виїздах і шляхом статистичної обробки форм обліку роботи автомобілів, які повинні бути розроблені робочою групою.

Визначення фактичних затрат палива автомобілями підконтрольної групи при виконанні транспортних робіт на змішаному і товарному бензині виконується шляхом статистичного обробітку форм обліку роботи автомобілів, використання паливно-мастильних матеріалів і виконанні транспортних робіт.

Оцінка і аналіз відмов в роботі автомобілів, які можуть бути визвані використанням змішаного бензину, ведеться по формі, які повинні бути розроблені робітничою групою.

Оцінка впливу змішаного бензину на перелік шкідливих речовин в салоні водія або в пасажирському салоні автомобіля і визначення відповідно переліку шкідливих речовин вимогам діючих стандартам Міністерства охорони здоров’я України.

По аналізам результатів експлуатаційних випробувань підконтрольної групи автомобілів з використанням експериментальної групи змішаного бензину і товарних бензинів робляться висновки і пропозиції про можливості використання змішаного бензину для автомобілів замість товарних бензинів А-80 і А-92. [4]

Сорти палива:

змішаний високооктановий бензин згідно ТУУ00149943 501-98 "Бензини автомобільні з підвищеним кінцем закіпання", який містить 92% товарного бензину А-80 і 8% високооктанового кисневовмісного домішку (ВКД) згідно ТУУ18.475-98;

змішаний низько октановий бензин згідно ТУУ00149943,501-98 "Бензини автомобільні з підвищеним кінцем закіпання", який містить 50% товарного бензину А-80, 42% стабільного бензину (із газоконденсату) і 8% високооктанового кисневовмісного домішку (ВКД) згідно ТУУ18,475-98;

товарний бензин А-80 і А-92 згідно ГОСТ 2084-77 і ТУУ00149943.501-98 "Бензини автомобільні з підвищеним кінцем закіпання".

4.3 Програма проведення випробувань

Програма експлуатаційних випробувань підконтрольної групи автомобілів входить:

визначення фактичних затрат палива автомобілями при виконання транспортних робіт на змішаному і товарному бензинах;

оцінка фактичних антидетонаційних характеристик змішаного палива в умовах експлуатації;

оцінка впливу змішаного бензину на пускові якості автомобілів при різному температурному становищі двигунів і різних метеорологічних умов (температура, волога, тиск);

оцінка впливу змішаного бензину на безпечність роботи двигунів при різних температурних становищах двигуна і різних метеорологічних умов;

оцінка впливу змішаного бензину на безпечність роботи двигунів при різних температурних становищах двигуна і різних метеорологічних умов;

оцінка впливу на стабільність регулювань паливної системи двигуна при різних температурних станах двигунів;

оцінка впливу змішаного бензину на утримання шкідливих речовин в картерах двигунів;

оцінка впливу змішаного бензину на вміст шкідливих речовин в повітрі салону автомобіля;

оцінка впливу довготривалого напрацювання двигуна на змішаному бензині на технічний стан циліндрично-поршньової групи;

оцінка впливу довготривалого напрацювання двигуна на змішаному бензині на фізико-хімічні умови моторного масла.

Стендові випробування автомобілів проводять на стенді діагностики тягових характеристик автомобілів мод.4819. стенд вимірює силу тяги на колесах на бігучих барабанах Рк [кН], час розгону Трозг [с] від 40 км/год до 70 км/год.

Концентрація окису вуглецю СО% і легких Сш НnРРТ в ШГ визначається газоаналізатором "JKEX-201" (Японія) способом інфрачервоної спектроскопії.

Компресія двигуна вимірюється компресометром О-224.

Похибки вимірювань показників:

швидкість, Va = ±2,0% (головна приведена);

сила тяги на колесах, Рк = ±2,0%;

час розбігу, Т = ±0,1с;

концентрація СО в ШГ ±3,0%;

концентрація СшНп (л) в ШГ ± 3,0%;

температура ШГ±1,00С;

компресія ± 0,025 МПа;

температура повітря ± 100С;

температура масла ± 100С;

температура палива ± 100С;

барометричний тиск ± 200Па;

тиск масла ± 20кПа.

Основні характеристики аналізатора детонаційної стійкості бензину:

повторний результат виміру не менше 0,5 октанове число;

діагностика вимірювання октанового числа 50…110 одиниць.

Данні похибки вимірювань показників використовуємо у дослідженнях.


5. Результати досліджень

Для випробувань було взято бензин марок: А-80, А-92, АИ-93, А-95, А-98 по ГОСТ 2084-77 ТУУ00149943.501-98.

Опитні партії які отримали в промислових умовах, шляхом змішування бензинових фракцій, стабільного бензину, товарного бензину, (ВКД) по ТУУ18475-98. Приготування бензину по затвердженій технології і пройшла сертифікацію в системі Укр. Се. Про.

Підконтрольна група автомобілів випробувалась у відповідності до вимог Програмного методу випробувань.

Таблиця 5.1 Склад підконтрольної групи автомобілів

Марка автомобіля Рік випуску, [рік]

Вага автомобіля,

[кг]

Об’єм двигуна, [см3]

Головний вид експлуатації Марка палива
ЗИЛ-131 1983 9500 6000

Паливо

заправник

А-80см

А-80

ГАЗ-5312 1968 9600 4250

Паливо

заправник

А-80см

А-80

ГАЗ-3307 1992 7400 4250 Платформа

А-80см

А-80

ГАЗ-2410 1990 1320 2445 Легковий

А-92см

АИ-93

ГАЗ-3102 1990 1370 2450 Легковий

А-92см

АИ-93

ВАЗ-2107 1991 1030 1458 Легковий

А-92см

АИ-93

ВАЗ-21061 1992 1046 1569 Легковий

А-92см

АИ-93

AUDI 1993 1400 1900 Легковий

А-95см

А-98

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


ИНТЕРЕСНОЕ



© 2009 Все права защищены.