рефераты бесплатно
 

МЕНЮ


Дипломная работа: Модернізація апарату для ультразвукової терапії шляхом удосконалення блоку живлення

Вхідними даними підсилювача є: його вхідна напруга Uвх, вхідний струм Iвх і вхідна потужність сигналу Рвх, при яких підсилювач віддає в навантаження задану потужність, струм або напругу, а також вхідний опір підсилювача Zвх. Вхідний опір підсилювача в загальному випадку комплексно, але вхідну потужність, струм і напругу звичайно визначають в умовах, при яких вхідний опір можна вважати активному і рівним Rвх; у цьому випадку

Uвх=IвхRвх; Rвх=Uвх/Iвх; Рвх=UвхIвх.

Джерело сигналу, що підключається до входу підсилювача, характеризується електрорушійною силою Едж і внутрішнім опором Zдж.

До вихідних даних відносяться: розрахункова, тобто задана технічними вимогами, потужність сигналу Pнагр віддається підсилювачем у навантаження і називана вихідною потужністю підсилювача; вихідна напруга сигналу Uвих або вихідний струм сигналу Iвих, що віддаються підсилювачем при роботі його на розрахунковий опір навантаження Zнагр, а також вихідний опір підсилювача Zвих.

Опір навантаження підсилювача в загальному випадку комплексно, але вихідну потужність, струм і напругу також звичайно визначають в умовах, при яких навантаження можна вважати активної і рівної Rнагр; при цьому

Uвих=IвихRнагр; Рнагр=IвихUвих=I2вихRнагр=U2вих/Rнагр.

Вихідний опір підсилювача в загальному випадку також комплексно, однак воно рідко є істотним показником, а тому звичайно не вказується.

Коефіцієнти підсилення і коефіцієнти корисної дії.

Коефіцієнт підсилення напруги К, називаний звичайно просто коефіцієнтом підсилення підсилювача, являє собою відношення сталого значення напруги сигналу на виході до напруги сигналу на вході пристрою:

К=Uвих/Uвх (1)

Наскрізний коефіцієнт підсилення напруги К* являє собою відношення вихідної напруги до ЕРС джерела сигналу Едж:

К*=Uвих/Едж (2)

Відношення сталого значення струму сигналу на виході до струму сигналу на вході являє собою коефіцієнт підсилення струму Kт а відношення потужності сигналу в навантаженні підсилювача до потужності сигналу на вході - коефіцієнт підсилення потужності Км:

Кт=Iвих/Iвх; Км=Рнагр/Рвх

Коефіцієнти підсилення напруги і токи є комплексними величинами, тому що вихідна напруга і струм через наявність у навантаженні і ланцюгах підсилювача реактивних складові опори зрушені по фазі щодо вхідних значень.

У зв'язку з тим, що сприйняття органів почуттів людини підкоряється логарифмічному законові, абсолютну величину (модуль) коефіцієнтів підсилення нерідко виражають у логарифмічних одиницях - децибелах або неперах, для чого користуються співвідношеннями:

К [дб] =20lg; Кт [дб] =20lgKт; Км [дб] =20lgKм;

К [неп] =ln; Кт [неп] =lnKт; Км [неп] =lnKм; (3)

де е - основа натуральних логарифмів. З (3) випливає, що

 (ДО; Кт; Км) [неп] =1,115 (ДО; Кт; Км) [дб] (4)

Коефіцієнт корисної дії вихідного ланцюга підсилювального каскаду η являє собою відношення потужності сигналу Р~, що віддається витівкою ланцюгом, до споживаній нею потужності Ро від джерела живлення вихідного ланцюга:

η=P~/P0 (5)

ККД вихідного ланцюга є важливим показником економічності роботи каскаду і використовується для оцінки властивостей різних режимів роботи підсилювальних елементів. Для оцінки економічності роботи могутніх підсилювачів використовують поняття коефіцієнта корисної дії підсилювача ηпідс, рівного відношенню віддається підсилювачем у навантаження потужності сигналу Рнагр до сумарної потужності ΣР, споживаної їм від усіх джерел харчування:

Ηпідс= Рнагр/ ΣР (6)

Частотна і фазова характеристики.

Форма складного гармонійного сигналу на виході лінійного чотириполюсника відрізняється від форми сигналу на його вході, якщо

1) гармонійні складового вхідного сигналу змінюються (підсилюються або послабляються) чотириполюсником неоднаково. Зміни форми сигналу, викликані цією причиною, називають частотними перекручуваннями;

2) внесені чотириполюсником фазові зрушення змінюють взаємне розташування гармонійних складових у вихідному сигналі. Викликувані цим зміни форми вихідного сигналу називають фазовими перекручуваннями.

Тому що частотні і фазові перекручування можуть виникати в лінійному електричному ланцюзі, що не містить нелінійних елементів, них називають лінійними перекручуваннями.

Представивши вихідну напругу підсилювача на частоті ω як вектор, зрушений на кут φω стосовно вектора вхідної напруги Uвх, на підставі (1) одержимо

К= (7)

відкіля видно, що коефіцієнт підсилення на будь-якій частоті також є вектором, який характеризується модулем Кω=Uвих. ω/Uвх і фазовим кутом φω, який являє собою кут зрушення фази між вихідною і вхідною напругами підсилювача

Якщо відкласти вектор коефіцієнта підсилення підсилювача Кω у площині комплексних чисел або полярній системі координат, то при зміні частоти сигналу ω від 0 до ∞ кінець вектора опише криву, називану частно-фазовой характеристикою підсилювача або його годографом коефіцієнта підсилення (рис 1.2). Частотнофазова характеристика містить повну інформацію як про залежності величини коефіцієнта підсилення від частоти, так і про зміну з частотою внесеного підсилювачем кута зрушення фази, характеристики такого типу (годографи) зручні для аналізу стійкості підсилювачів з негативним зворотним зв'язком і визначення деяких їхніх показників. Для судження про внесений підсилювачем лінійних викривлень частотнофазову характеристику не використовують тому що для цієї мети вона недостатньо наочна.

Рис.1.2 Частотнофазова характеристика підсилювача.

Рис.1.3 Частотна характеристика підсилювача

Оцінку внесених підсилювачем частотних спотворень роблять по його частотній характеристиці (називаною також амплітудно-частотною характеристикою), що представляє собою графік залежності модуля коефіцієнта підсилення До від частоти (мал.1.3), де по вертикальній осі відкладають К в лінійному або логарифмічному масштабі (або вихідна напруга Uвих, що відповідає незмінному значенню вхідної напруги Uвх) і по горизонтальній осі - частоту f у герцах (або кутову частоту ω=2πf) у логарифмічному масштабі. Необхідність застосування логарифмічного масштабу на осі частот диктується широким діапазоном робочих частот сучасних підсилювачів.

Діапазоном робочих частот підсилювача гармонійних сигналів називають смугу частот від нижчої робочої частоти fн до вищої робочої частоти fв, у межах якої абсолютна величина (модуль) коефіцієнта підсилення, а іноді і його фаза не повинні виходити за межі заданих допусків.

Діапазон робочих частот, а отже, і частоти fн і fв визначаються призначенням підсилювача; їх вибирають у відповідності зі спектральним складом посилюваних сигналів.

Амплітудна характеристика і динамічний діапазон.

Амплітудною характеристикою підсилювача називають залежність амплітуди (або діючого значення) напруги сигналу на виході, від амплітуди (або діючого значення) напруги сигналу на вході. Тому що коефіцієнт підсилення ідеального підсилювача надає собою постійну величину, що не залежить від величини вхідного сигналу, його амплітудна характеристика являє собою пряму. минаючу через початок координат; під кутом, обумовленим посиленням підсилювача (мал.1.4, пунктир).

Рис.1.4 Амплітудна характеристика підсилювача

Амплітудна характеристика реального підсилювача (мал.1.4, суцільна лінія) не проходить через початок координат, а згинається при малих вхідних напругах, перетинаючи вертикальну вісь у точці Uш, тому що при відсутності вхідного сигналу вихідна напруга підсилювача дорівнює напрузі власних шумів у його вихідному ланцюзі Uш. При занадто великих вхідних напругах реальна амплітудна характеристика також розходиться з ідеальної, згинаючи внаслідок перевантаження нелінійних елементів, що містяться в схемі підсилювача, в основному тому, що амплітуда сигналу на останньому (вихідному) підсилювальному елементі при цьому виходить за межі робочої ділянки його характеристики.

З мал.3 видно, що реальний підсилювач може підсилювати підведені до його входу сигнали з напругою не нижче Uвхмін тоді як більш слабкі сигнали будуть маскуватися (заглушатися) напругою власних шумів підсилювача Uш, і не вище Uвхмакс тому що інакше підсилювач буде вносити дуже великі нелінійні спотворення. Відношення Uвхмакс/Uвх. мін характеризує діапазон напруг сигналу, посилюваних даним підсилювачем без надмірних перешкод і перекручувань, і називається динамічним діапазоном підсилювача:

Ду=Uвхмакс/Uвхмін; Ду (дБ) =20lgДу=20lgUвх. макс/Uвх. мін (8)

У більшості випадків напруга сигналу, підведена до входу підсилювача, не є постійною величиною, а змінюється від найбільшого значення Uсигн. макс до найменшого Uсигн. мін. Відношення найбільшої напруги до найменшого характеризує робочий діапазон напруг даного джерела сигналу і називається динамічним діапазоном сигналу:

Дс=Uсигн. макс/Uсигн. мін; Дс (дБ) =20lgДс=20lgUсигн. макс/Uсигн. мін (9)

Щоб підсилювач міг підсилювати весь діапазон напруг джерела сигналу, динамічний діапазон підсилювача повинний бути більше або дорівнює динамічному діапазонові сигналу, тобто Ду=Дс. Якщо цю вимога задовольнити не вдається, то для посилення з припустимими спотвореннями і перешкодами сигналів, що надходять на підсилювач, динамічний діапазон сигналу стискають за допомогою автоматичного регулятора посилення; іноді для цієї мети використовують ручний регулятор.

Підсилювачі потужності.

Основною задачею підсилювача потужності є забезпечення на навантаженні заданої потужності корисного сигналу. Більшість електронних підсилювачів складається з декількох каскадів попереднього посилення напруги сигналу й одного або двох каскадів посилення потужності, називаних відповідно предоконечным і кінцевим каскадами.

Підсилювачі потужності мають ряд особливостей у порівнянні з підсилювачами напруги. Зовнішніми навантаженнями кінцевих каскадів звичайно служать обмотки електродвигунів, реле, динамічних гучномовців і т.д., опору яких у більшості випадків мають порядок одиниць і десятків омів. У той же час вихідні опори транзисторів і ламп, до яких підключається зовнішнє навантаження, складають тисячі омів і більш. А тому що максимальна потужність, виділювана в навантаженні, виникає за умови рівності внутрішнього опору джерела й опору навантаження, необхідно погодити ці опори один з одним. Ця задача вирішується за допомогою погоджуючого трансформатора погодить, називаного вихідним. Первинну обмотку вихідного трансформатора включають у колекторний ланцюг транзистора або анодний ланцюг лампи, а до вторинної обмотки підключають зовнішнє навантаження підсилювача потужності. Тоді опір зовнішнього навантаження Rн, приведений до первинної обмотки трансформатора, буде мати величину R'н, обумовлену коефіцієнтом трансформації трансформатора kт.

R'н= Rн kт2= Rн (ω1/ω2) 2, (10)

де ω1 і ω2 - відповідно число витків первинної і вторинної обмоток трансформатора.

Підбором коефіцієнта трансформації можна домогтися оптимального режиму роботи підсилювача потужності. При вихідному опорі підсилювача потужності Rвих= R'н формули (10) знаходимо

kт=ω1/ω2= (11)

Величина вихідної потужності Рвих у залежності від призначення підсилювача може складати від часток вата до десятків кіловатів і більш. Ця потужність передається навантаженню Rн підсилювача і дорівнює

Рвих= Uвих. т/Rн (12)

де Uвих. m=IнmRн - амплітуда перемінної напруги на навантаженні Rн.

Чим більше вихідна потужність підсилювача, тим більшого практичного значення набуває його коефіцієнт корисної дії (ККД), тому що споживання енергії від джерел живлення може виявитися досить значним. Тому в підсилювачах потужності часто використовують режим класу В, що забезпечує більш високий ККД, чим режим класу А. Але в режимі класу В виникають значні нелінійні перекручування. Для їхнього зменшення служать спеціальні двотактні підсилювачі потужності, а в однотактных підсилювачах потужності приходиться застосовувати тільки режим класу А.

Як правило, двотактні схеми підсилювачів потужності на лампах застосовують при вихідній потужності понад 2-6 Вт, а на транзисторах - уже при потужності більш 50-100 мВт. Для одержання значної вихідної потужності (порядку сотень ват і вище) застосовують потужні генераторні лампи.

Однотактные підсилювачі потужності.

На мал.1.5 представлена схема однотактного підсилювача потужності на транзисторі.

Рис.1.5 Схема однотактного підсилювача потужності.

Конденсатори Свх є вхідними розділовими, резистори Rб1 і Rб2 утворять дільник, що створює необхідний зсув на базу транзисторів, а резистор Rе і конденсатор Се є елементами температурної стабілізації режиму роботи каскаду.

Розрахунок основних величин, що характеризують режим роботи підсилювача потужності, проводять графоаналітичним методом по вихідних характеристиках транзистора або анодних характеристик лампи. При цьому граничні експлуатаційні величини підсилювальних приладів не повинні бути перевищені. Для транзистора цими величинами є максимальна напруга колектора Uкмакс максимальний струм колектора Iкмакс і максимальна потужність, що розсіюється на колекторі транзистора, Ркмакс.

Двотактні підсилювачі потужності.

Схема двотактного підсилювача потужності на транзисторах і часових діаграмах, що пояснюють принцип його роботи, дані на мал.1.6 а і б.

Двотактний підсилювач потужності складається з двох симетричних пліч на транзисторах VI і V2 з максимально близькими параметрами і працюючими в однакових режимах. Звичайно двотактні підсилювачі потужності працюють у режимі посилення класу В, тому що при цьому їхній КПД найбільший. Напруга зсуву на бази транзисторів у режимі класу У вибирають таким чином, щоб робоча крапка знаходилася на нижньому кінці лінії навантаження й обоє транзистора при відсутності сигналу були замкнені. У схемі мал.1.6 а, це досягається підбором співвідношення опору резисторів Rб1 і Rб2.

На вході схеми мається вхідний трансформатор Т1, вторинна обмотка якого складається з двох половин з висновками 0-1 і 0-2. На кожній з цих половин виникають однакові по величині, але протилежні по фазі сигнали, що передаються на бази транзисторів.

Протягом першого напівперіоду сигналу Uвх відкривається тільки транзистор V1, у ланцюзі його колектора і через одну половину первинної обмотки вихідного трансформатора Т2 проходить струм i1до (мал.1.6, б). Другий транзистор V2 при цьому залишається закритим, а струм iк2 = 0. Під час другого напівперіоду сигналу Uвх відкривається транзистор V2, з'являється струм ік2 а струм ік1 дорівнює 0 і т.д.

Таким чином, у двотактній схемі підсилювача транзистори V1 і V2 працюють по черзі, і кожний з них підсилює один напівперіод вхідного сигналу. В вторинній обмотці вихідного трансформатора виникає ЕРС від обох напівперіодів струму первинної обмотки ік1 і ік2 і відновлюється перемінна напруга Uвых, що діє на навантаженні Rн.

Рис.1.6. Двотактний підсилювач потужності:

а - схема; б - графіки, що пояснюють принцип його роботи.

У деяких схемах двотактних підсилювачів потужності замість вхідного трансформатора для одержання двох протифазних вхідних напруг використовують спеціальний фазоінверсний каскад на транзисторі або лампі.

Досить часто застосовують двотактні бестрансформаторные підсилювачі потужності, у яких плечі утворені транзисторами різних типів, тобто типів р-n-р і n-р-n. Достоїнством таких підсилювачів потужності є відсутність вхідного і вихідного трансформаторів, що особливо важливо в портативній апаратурі. Однак їм властивий і недолік - труднощі підбора однакових транзисторів різних типів.


2. Розрахунково-конструкторська частина 2.1 Структурна схема приладу

Апарат складається з наступних функціональних вузлів А1 - пристрою індикації часу процедури; А2 - пристрою установки часу процедури; А3 - електронні генератори; А4 - пристрою індикації частоти й амплітуди вібрації; трансформатора з випрямлячем; мережного фільтра; комплекту випромінювачів.

Електронний генератор призначений для одержання напруги ультразвукової частоти, подаваної на п'єзоелектричний перетворювач, і являє собою генератор гармонійних коливань частотою (221,65) кГц і (444,4) кГц із пристроєм зворотного зв'язку.

Електронний генератор розташований на платі A3 і містить: емітерний повторювач; блок регулювання й установки величини зворотного зв'язку; попередній підсилювач напруги; погоджуючий пристрій; передкінцевий підсилювач; підсилювач потужності; пристрій захисту; перемикач амплітуди; перемикач хвилеводів; стабілізатор +40 В.

Пристрій установки часу процедури розташовано на платі А 2 і містить: формувач прямокутних, імпульсів; формувач тимчасових інтервалів; каскад керування; дільник на п'ять або шість; каскади керування, каскад збігу; дільник на десять; каскади збігу; формувач звукової сигналізації.

Пристрій індикації часу процедури розміщено на платі А1 і містить: стабілізатор +5 В; цифрові індикатори часу; дешифратори; лічильник імпульсів.

Пристрій індикації частоти й амплітуди вібрації розміщені на платі А4 і містить: цифровий індикатор амплітуди; двоїчно-десяткові лічильники; цифровий індикатор хвилеводів; дешифратори; цифрові індикатори частоти.

Блок живлення забезпечує стабілізованими напругами +5, +40В усі функціональні вузли генератора і складається з: трансформатора з випрямлячем; стабілізаторів.

Мережний фільтр призначений для фільтрації перешкод, створюваних ультразвуковим генератором радіомовному діапазонові.

У комплект випромінювачів входять два п'єзоелектричних перетворювачі, змінні хвилеводи. П’єзокерамічні перетворювачі служать для перетворення енергії електричних коливань у механічні і посилення механічних коливань по амплітуді. Хвилеводи служать для посилення і підведення механічних коливань до хворої ділянки органів людини.

2.2 Електрична схема приладу і взаємозв’язок між її елементами

Апарат складається з наступних функціональних вузлів; А1 - пристрою індикації часу процедури; А2 - пристрою установки часу процедури; А3 - електронні генератори; А4 - пристрою індикації частоти й амплітуди вібрації; трансформатора з випрямлячем; мережного фільтра; комплекту випромінювачів.

Електронний генератор призначений для одержання напруги ультразвукової частоти, подаваної на п'єзоелектричний перетворювач, і являє собою генератор гармонійних коливань частотою (221,65) кГц і (444,4) кГц із пристроєм зворотного зв'язку.

Електронний генератор розташований на платі A3 і містить: емітерний повторювач; блок регулювання й установки величини зворотного зв'язку; попередній підсилювач напруги; погоджуючий пристрій; передкінцевий підсилювач; підсилювач потужності; пристрій захисту; перемикач амплітуди; перемикач хвилеводів; стабілізатор +40 В.

Коливання ультразвукової частоти виникають у результаті підбора значень елементів у ланцюзі зворотного зв'язку генератора.

Для самозбудження генератора на частоті п'єзоелектричного перетворювача повинні виконуватися умови балансу амплітуд і фаз. Баланс амплітуд забезпечується вибором робочих точок і коефіцієнтом підсилення попереднього підсилювача, передкінцевого підсилювача і вихідного підсилювача потужності. Баланс фаз досягається вибором кількості каскадів.

Напруга зворотного зв'язку, що знімається із сектора п'єзоелектричного перетворювача, через елемент R54 надходить на резистор R3 при роботі генератора на 44 кГц або на R4 при роботі генератора на 22 кГц.

З резистора R3 або R4 напруга надходить на контур L1, С5, С4 (44 кГц) або L1, С5, С4, С3, С2 (22 кГц) і далі через R1 на вхід емітерного повторювача, зібраного на транзисторі V 2 (КТ315Б).

Регулятор амплітуди напруги на резисторі R12 дозволяє регулювати величину напруги зворотного зв'язку, що надходить на попередній підсилювач напруги, зібраний на транзисторах V3 (КТ315Б) і V4 (КТ815В) за схемою з загальним емітером.

З попереднього підсилювача напруга зворотного зв'язку через проміжний трансформатор Т1 надходить на передкінцевий підсилювач напруги, що виконує роль фазоінвертора, зібраний на транзисторах V 5, V6 (КТ815В). Для вибору робочих точок фазоінвертора встановлені два резистори R21, R24.

З емітерних резисторів R26, R27 напруга зворотного зв'язку надходить на вхід підсилювача потужності, зібраного за двотактною схемою, на транзисторах V3, V4 (КТ819ВМ), установлених на радіаторах.

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.