рефераты бесплатно
 

МЕНЮ


Учебное пособие: Безопасность жизнедеятельности и здоровье человека

Избыток магния может приводить к дефициту кальция и фосфора.

Марганец (Mn) - находится во всех органах и тканях. Наиболее богаты марганцем трубчатые кости и печень (на 100 г свежего вещества в трубчатых костях марганца содержится 0,3 мг, в печени - 0,205-0,170 мг). Для детского организма необходимо в сутки 0,2-0,3 мг марганца на 1 кг веса тела, для взрослого 0,1 мг. Наряду с печенью важная роль в накоплении марганца принадлежит поджелудочной железе. Важен для репродуктивных функций и нормальной работы центральной нервной системы. Марганец помогает устранить половое бессилие, улучшить мышечные рефлексы, предотвратить остеопороз, улучшить память и уменьшить нервную раздражительность. Особенно богаты марганцем чай, растительные соки, цельные злаковые, орехи, зеленые овощи с листьями, горох, свекла.

Отравление марганцем дают следующие симптомы: сильная утомляемость, слабость, сонливость, тупые головные боли в лобно-височных областях, тянущие боли в пояснице, конечностях, реже боли ишиалгического характера, боли в правом подреберье, в подложечной области, понижение аппетита, медлительность движений, расстройство походки, парестезии, расстройство мочеиспускания, половая слабость, бессонница, подавленное настроение, слезливость. Сильная скованность движений, больные утрачивают способность широко шагать. При недостатке марганца нарушаются процессы окостенения во всем скелете, трубчатые кости утолщаются и укорачиваются, суставы деформируются. Нарушается репродуктивная функция яичников и яичек.

Избыток марганца усиливает дефицит магния и меди.

Медь (Cu) - общее содержание меди в организме человека составляет примерно 100-150 мг. В печени взрослых людей содержится в среднем 35 мг меди на 1 кг сухого веса. Поэтому печень можно рассматривать как "депо" меди в организме. В печени плода содержится в десятки раз больше меди, чем в печени взрослых. Потребность в меди у взрослого человека составляет 2 мг в день. Медь необходима для процессов образования гемоглобина и в этом смысле не подлежит замене другими элементами. Медь также участвует в процессах роста и размножения. Участвует в процессах пигментации, так как входит в состав меланина. При недостатке меди в организме наблюдаются: задержка роста, анемия, дерматозы, депигментация волос, частичное облысение, потеря аппетита, сильное исхудание, понижение уровня гемоглобина, атрофия сердечной мышцы.

Избыток меди приводит к дефициту цинка и мoлибдена, а также марганца.

Молибден (Мо) - способствует метаболизму углеводов и жиров, является важной частью фермента, отвечающего за утилизацию железа, в связи с чем помогает предупредить анемию. Суточная норма приема не установлена, но предполагается на уровне 75-250 мкг. Содержится в темно-зеленых листовых овощах, неочищенном зерне, бобовых. Проявления недостаточности изучены плохо. Повышенное содержание в организме встречается очень редко.

Натрий (Na) - калий и натрий были открыты вместе и оба важны для нормального роста и состояния организма. Они являются антагонистами, т.е. повышение содержания натрия приводит к уменьшению калия. Норма суточного потребления не существует, однако считается, что потребность взрослого человека составляет около 500 мг хлорида натрия (поваренной соли) в сутки. Натрий в первую очередь нужен для нормального функционирования нервно-мышечной системы. При дефиците натрия происходит нарушение усвоения углеводов, возможны невралгии, отчасти понижение давления.

Повышенное содержание натрия в волосах отражает, как правило, нарушение водно-солевого обмена, дисфункцию коры надпочечников. Может встречаться при избыточном потреблении поваренной соли, сахарном диабете, нарушении выделительной функции почек, склонности к гипертонии, отекам, неврозах. Люди, особенно дети, с избытком натрия часто легко возбудимы, впечатлительны, гиперактивны, у них может быть повышена жажда, потливость. Иногда возможно накопление натрия в волосах при длительном контакте с морской водой и отдельными видами моющих средств.

Пониженное содержание натрия в волосах у взрослых обычно встречается при нейроэндокринных нарушениях, хронических заболеваниях почек и кишечника и как следствие черепно-мозговых травм.

Селен (Sе) - в чистом виде встречается в природе редко, главным образом в виде примеси к сернистым металлам. Роль селена в организме еще мало изучена. Тем не менее, считается, что его присутствие в организме оказывает антиоксидантное действие, замедляя старение. Кроме того, селен помогает поддерживать юношескую эластичность в тканях, способствует устранению и появлению перхоти. Суточные нормы составляют: 50 мкг - для женщин, 70 мкг - для мужчин, 65 мкг - для беременных и 75 мкг - для кормящих грудью. Селен хорошо сочетается с витамином Е. Содержится в морепродуктах, почках, печени, пшеничных зародышах, отрубях, луке, помидорах, капусте брокколи. В больших количествах соединения селена к двум формам поражения - к гепато - холециистопатии (увеличение печени до 3-х см и боли в правом подреберье) и к изменениям, проявляющимся главным образом в нервно-мышечном аппарате (боли в конечностях, судороги, чувство онемения).

При дефиците селена в организме усиленно накапливаются мышьяк и кадмий, которые, в свою очередь, усугубляют дефицит селена. В свою очередь селен защищает организм от тяжёлых металлов, а избыток может привести к дефициту кальция.

Сера (S) - в организм человека сера поступает с пищей в виде органических белковых соединений - аминокислот, глютадиона, сульфатидов, витамина В1. Суточная потребность не установлена, но при употреблении достаточного количества белка дефицита серы наблюдаться не будет.

Сера, подобно азоту, входит в состав белков, в силу чего белковый обмен является одновременно азотистым и серным. В белках сера содержится в аминокислотах: цистеине, цистине, метионине. Особенно богаты серой поверхностные слои кожи; здесь сера содержится в кератине (волосы содержат до 5-10% кератина) и меланине, пигменте, предохраняющем в виде загара глубокие слои кожи от вредного действия ультрафиолетовой радиации.

Элементарная сера не обладает выраженным токсическим действием, но все ее соединения токсичны. Например, при высокой концентрации сероводорода в воздухе отравление может развиться почти мгновенно. Судороги и потеря сознания сопровождаются быстрой смертью от остановки дыхания. При недостатке серы наблюдаются: тахикардия, повышение АД, нарушения функций кожи, выпадение волос, запоры, в тяжелых случаях - жировая дистрофия печени, кровоизлияние в почки, нарушения углеводного обмена и белкового обмена, перевозбуждение нервной системы, раздражительность и другие невротические реакции.

Фосфор (Р) - главным "депо" органических фосфорных соединений являются мышечная и костная ткани. Суточная потребность для взрослого человека составляет 0,8-1,2 г. Фосфор в виде своих соединений играет важнейшую роль во всех процессах организма: фосфорная кислота участвует в построении многочисленных ферментов (фосфатаз) - главных двигателей химических реакций клеток. Из фосфорнокислых солей состоит ткань нашего скелета.

Избыток фосфора производит острое отравление: сильная боль в желудочно-кишечном тракте, рвота, иногда через несколько часов наступает смерть. Хроническое отравление выражается расстройством обмена веществ в организме и в костной ткани в частности. При недостатке фосфора бывают отмечаются рахит, пародонтоз.

При избыточном поступлении фосфора может снижаться уровень марганца, а также повышаться уровень выведения кальция, что создает риск возникновения остеопороза.

Хром (Сr) - хром является постоянной составной частью всех органов и тканей человека. Наибольшее количество обнаружено в костях, волосах и ногтях - из этого следует, что недостаток хрома сказывается в первую очередь на состоянии этих органов. В относительно больших количествах содержится в яйцах, телячьей печени, пшеничных зародышах, пивных дрожжах, кукурузном масле, моллюсках. Суточная норма потребления не установлена, но предполагается, что она колеблется в пределах 50-200 мкг. Хром оказывает действие на процессы кроветворения; оказывает действие на работу инсулина (ускоряет); на углеводный обмен и энергетические процессы. При хроническом отравлении хромом наблюдаются головные боли, исхудание, воспалительные изменения слизистой желудка и кишечника. Хромовые соединения вызывают различные кожные заболевания, дерматиты и экземы, протекающие остро и хронически и носят пузырьковый, папулезный, гнойничковый или узелковый характер.

Цинк (Zn) - отложение цинка в печени доходит до 500-600мг/1 кг веса; кроме того цинк отлагается преимущественно в мышцах и костной системе. Суточная потребность человека в цинке составляет 12-16мг для взрослых и 4-6мг для детей. Наиболее богаты цинком дрожжи, пшеничные, рисовые и ржаные отруби, зерна злаков и бобовых, какао, морепродукты. Наибольшее количество цинка содержат грибы - в них содержится 130-202,3мг на 1 кг сухого вещества. В луке - 100,0 мг, в картофеле -11,3мг, в коровьем молоке - примерно 3 мг/ 1 литр.

Цинк оказывает влияние на активность половых и гонадотропных гормонов гипофиза. Цинк также увеличивает активность ферментов: фосфатаз кишечной и костной, катализирующих гидролиз. Тесная связь цинка с гормонами и ферментами объясняет его влияние на углеводный, жировой и белковый обмен веществ, на окислительно-восстановительные процессы, на синтетическую способность печени. Считается, что цинк обладает липотропным эффектом, т.е. способствует повышению интенсивности распада жиров, что проявляется уменьшением содержания жира в печени.

При цинковом отравлении наступает фиброзное перерождение поджелудочной железы. Избыток цинка задерживает рост и нарушает минерализацию костей. При дефиците цинка наблюдается задержка роста, перевозбуждение нервной системы и быстрое утомление. Поражение кожи происходит с утолщением эпидермиса, отеком кожи, слизистых оболочек рта и пищевода, ослаблением и выпадением волос. Недостаточность цинка также приводит к бесплодию.

Дефицит цинка может приводить к усиленному накоплению железа, меди, кадмия, свинца. Избыток приводит к дефициту железа, меди, кадмия.

Экосистема жилища

Экосистема- это любое сообщество живых существ вместе с его физической средой обитания, функционирующее как единое целое. Примером экосистемы может служить пруд, включающий сообщество организмов, жизнь которых протекает в воде, физические свойства и химический состав воды, особенности рельефа дна, состав и структуру грунта, взаимодействующий с поверхностью воды атмосферный воздух, солнечную радиацию.

Рассмотрение экосистемы важно в тех случаях, когда речь идет о потоках вещества и энергии, циркулирующих между живыми и неживыми компонентами природы, о динамике элементов, поддерживающих существование жизни, об эволюции сообществ. Ни отдельный организм, ни популяцию, ни сообщество в целом нельзя изучать в отрыве от окружающей среды. Экосистема, по сути, это то, что мы называем природой.

Экосистема — понятие очень широкое и применимое как к естественным (например, тундра, океан), так и к искусственным комплексам (например, аквариум, квартира).

I. Составляющие экосистемы квартиры

Продуцентами (производителями органических веществ) в квартире могут быть комнатные растения и растения аквариума.

Хлорофитум кучковатый (Семейство Лилейные. Родина — Южная Африка).

Травянистое растение с коротким стеблем. Узколанцетные, зеленые, дугообразно изогнутые листья вырастают пучком из верхушки стебля. Известны пестролистные формы со светлыми полосами в середине и по краю листа. Из верхушки стебля вырастают тонкие свисаюшие побеги, на которых сидят мелкие белые трехчленные цветки и новые растеньица — детки с пучком листьев и корней. Корни у хлорофитума белые, вздутые, как шишки, и очень сочные. Это неприхотливое растение. Поливать его можно очень редко, так как влага накапливается в его корнях. Размножается хлорофитум семенами, детками и делением куста.

Хлорофитум не только хорошо очищает комнатный воздух. Американский ученый Билл Вилвертон, много лет изучавший комнатные растения, отметил: «По каким-то причинам хлорофитум ассимилирует (поглощает) вредные газы с феноменальной скоростью и очишает воздух лучше, чем некоторые технические устройства». Особенно «неравнодушен» хлорофитум к окисидам азота, тяжелым металлам. Причем чем хуже качество воздуха для человека, тем лучше для растения. 4-5 экземпляров хлорофитума на 10м2 помещения способны очистить воздух от различных примесей на 70-80%.

Консументами (потребителями органических веществ), помимо человека, в квартире могут быть домашние питомцы — кошки, собаки, хомячки, птицы.

В числе редуцентов (разлагателей органических веществ) могут быть сапротрофные клещи (те самые, которые появляются в рекламе пылесоса «Электролюкс»). Эти клеши питаются отмершими частичками кожи, волос и пуха, отшелушившимися частичками ногтей и т.п. Если в квартире не проводить влажную уборку, то сгустки пыли могут содержать значительные количества этих мелких животных, которые, попадая в дыхательные пути человека, вызывают неприятные ощушения в горле и могут стать причиной аллергии.

Не менее интересной мне показалась информация о моли. Оказывается, личинки моли, питающиеся частичками шерстяной одежды, утилизируют их до углекислого газа, воды и неорганических веществ, которые потом могут использоваться продуцентами.

II. От чего зависит качество жилиша

Квартира — не только укрытие от неблагоприятных условий окружаюшего мира, но и мощный фактор, воздействующий на человека и в значительной степени определяющий состояние его здоровья. На качество среды в жилише влияют:

— наружный воздух;

— продукты неполного сгорания газа;

— вещества, возникающие в процессе приготовления пиши;

— вещества, выделяемые мебелью, книгами, одеждой и т.п.;

— продукты табакокурения;

— бытовая химия и средства гигиены;

— комнатные растения;

— соблюдение санитарных норм проживания (количество людей и домашних животных);

— электромагнитное загрязнение и др.

Концентрация загрязняющих веществ в квартирах в 2-5 раз выше, чем на улице города.

Воздействие радиоактивного излучения на человека

Альфа-излучение представляет собой поток положительно заряженных частиц, состоящих из двух протонов и двух нейтронов (ядер атома гелия). Альфа-распад испытывают такие тяжелые элементы, как уран, радий, радон, плутоний. В воздухе альфа-частица проходит несколько сантиметров, после чего, присоединив два электрона, превращается в атом гелия. Альфа-частицы полностью задерживаются листом бумаги или внешним слоем кожи. Однако, если вещество, испускающее альфа-излучение, попадает внутрь организма, оно становится разрушительным и опасным, поскольку обладает высокой ионизирующей способностью.

Бета-излучение – это электроны, которые образуются в результате распада нейтрона в ядре радионуклида на протон и электрон. Бета-частицы значительно меньше альфа-частиц и могут проникать несколько глубже. От бета-излучения можно защититься листом металла. В ткани организма бета-частицы могут проникать на глубину 1-2 см, но их разрушающая способность меньше, чем альфа-частиц.

Гамма-излучение представляет собой электромагнитное излучение, распространяющееся со скоростью света. Это наиболее проникающий вид радиоактивного излучения. Для защиты от гамма-квантов требуются бетон и металл большой толщины.

Рентгеновское излучение аналогично гамма-излучению, испускаемому ядрами, но оно получается искусственно в рентгеновской трубке, которая сама по себе не радиоактивна. Поскольку рентгеновская трубка питается электричеством, то испускание рентгеновских лучей может быть включено или выключено.

Нейтронное излучение образуется в процессе деления атомного ядра. Поскольку эти частицы электрически нейтральны, они обладают высокой проникающей способностью и оказывают сильное влияние на организм.

Источники естественного излучения

Человек постоянно подвергается воздействию радиоактивного излучения от природных радионуклидов, а также от источников, которые он создал сам. В зависимости от своего происхождения излучение классифицируется как естественное или искусственное.

Источниками естественной радиации являются космические лучи, падающие на Землю из космоса, и естественные радиоактивные элементы, содержащиеся в земной коре, строительных материалах, воздухе и пище, которую мы едим. За счет естественных источников человек получает как внешнее, так и внутреннее облучение.

Среднее значение эффективной эквивалентной дозы, получаемое жителем нашей планеты от природных источников за год, составляет 2,2 мЗв. Но существуют такие точки земного шара, где радиационный фон превышает средний уровень в 5 - 10 раз.

Вклад космического излучения в облучение людей зависит от географической широты и высоты над уровнем моря. В среднем он составляет 0,35 мЗв за год. С увеличением высоты над уровнем моря интенсивность космического излучения существенно повышается, так как уменьшается толщина защитного слоя атмосферы.

Большую часть дозы внешнего естественного облучения человек получает за счет природных радионуклидов, которые содержатся в воздухе (1,2 мЗв в год), земной коре (0,35 мЗв в год) и строительных материалах. В то же время наша пища содержит микроскопическое количество редких радиоактивных элементов, которые поступают вовнутрь организма и образуют постоянный источник внутреннего облучения (0,3 мЗв в год).

Источники искусственного излучения

В результате своей деятельности человек подвергает себя воздействию радиации сверх того, что является природным радиационным фоном. Примерами такого воздействия являются флюорография, рентгеновское обследование, телевидение и др. Все эти факторы обуславливают дополнительное радиационное воздействие на человека, равное примерно половине естественного радиационного фона.

Наибольший вклад в облучение людей от неприродных источников вносят медицинские исследования, поскольку они имеют массовый характер. Ионизирующее излучение широко применяется как для диагностики, так и для лечения заболеваний. В среднем для населения разных стран облучение от медицинских процедур составляет 1 мЗв в год (что составляет около 50% от облучения природными источниками).

Электронно-лучевая техника (телевизоры, мониторы компьютеров) является источником ионизирующего излучения, хотя и очень низкой интенсивности. Например, мощность дозы на расстоянии 0,5 м от телевизора может достигать 4 нЗв/ч (4×10-9 Зв/ч). Это немного, но, учитывая, что колоссальное количество людей регулярно проводит значительное время перед телевизорами и мониторами компьютеров, накопленная в результате коллективная доза вполне сравнима с другими источниками техногенного облучения. Ежедневный трехчасовой просмотр передач приводит к облучению дозой 0,0015 мЗв в год.

На высоте полета самолета (10 – 12 км) доза облучения примерно в 20 – 30 раз выше, чем в среднем на уровне моря. То есть 1 час в полете соответствует облучению в течение суток на земле (0, 003 мЗв).

Источником радиационного воздействия являются тепловые электростанции на органическом топливе. Каменные угли содержат естественные радиоактивные элементы (калий-40, уран-238, торий-232). При работе тепловых электростанций на угле эти радионуклиды выбрасываются в атмосферу, а также поступают с золой в отвалы.

Почти 40 лет атмосфера Земли загрязнялась радиоактивными продуктами атомных и водородных бомб, взрываемых в атмосфере. С 1945 года по 1981 год в атмосфере было осуществлено более 400 взрывов ядерного оружия. Суммарная мощность ядерных взрывов составила 550 Мтонн тринитротолуола (ТНТ). В биосферу было выброшено 12,5 т продуктов деления. Взрывы изменили равновесное содержание в атмосфере углерода-14 на 26%, трития – почти в 100 раз. Обмен воздушными массами между северным и южным полушариями мал, поэтому выпадение радиоактивных осадков происходит в основном в том полушарии, где проводились испытания. После прекращения испытаний в атмосфере радиационный фон стал снижаться и к настоящему времени практически достиг естественного уровня.

Предприятия ядерного топливного цикла в условиях нормальной работы не оказывают опасного воздействия на человека и биосферу. При безаварийной работе предприятий ядерного комплекса дополнительная доза облучения составляет менее 1% от природных источников (0,002 мЗв в год).

Действие излучения на человека

Нарушения, производимые излучением в тканях, не являются чем-то особенным и уникальным. Повреждения и гибель клеток организма – это естественный процесс. Клетки постоянно повреждаются и гибнут по различным причинам. Биологические ткани обладают природной способностью к регенерации, «залечиванию» повреждений, в том числе тех, которые возникли в результате радиационного облучения. Поврежденные клеточные структуры восстанавливаются, вместо погибших образуются новые клетки. Причем живые организмы способны «залечивать» повреждения в достаточно большом диапазоне доз излучения (учитывая большой разброс природного радиационного фона). Более того, существуют научные данные, свидетельствующие о положительном эффекте облучения дозами, которые значительно выше природного уровня (радиационный гормезис).

Опасность возникает тогда, когда организм «не успевает» справляться с возникающими разрушениями, то есть при высоких дозах радиации (как и в случае воздействия любого другого фактора – жары, холода, травмирования, нерационального питания и проч.)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


ИНТЕРЕСНОЕ



© 2009 Все права защищены.