рефераты бесплатно
 

МЕНЮ


Контрольная работа: Строение и функции органелл клетки. Законы Г. Менделя

Контрольная работа: Строение и функции органелл клетки. Законы Г. Менделя

Федеральное агентство по здравоохранению и социальному развитию ГОУ ВПО Челябинская Государственная Медицинская Академия

Фармацевтический факультет

Контрольная работа по медицинской биологии и генетике

Вариант №2

Выполнила: студентка

1 курса 198 группы

Заочного отделения фармацевтического

Факультета Думанова Н. К.

Проверил(а): доцент

Г.Г. Собенина

Челябинск -2010


Клетка элементарная генетическая и структурно – функциональная единица многоклеточных организмов. Строение и функции органелл клетки

Организм человека состоит из нескольких сотен типов клеток, каждый из которых представлен триллионами индивидуумов. Это нервные, мышечные клетки, клетки желез, крови и другие; каждый тип имеет ряд различных подтипов. Как указывают названия, клетки определенных типов группируются в органы или системы органов, выполняющие специфические функции. Способ их группировки часто играет решающую роль в проявлении функций клеток. Например, поперечнополосатые мышечные клетки похожи друг на друга и обладают способностью к сокращению. Порядок их объединения определяет различия между сотнями различных мышц в теле человека. Типы связи клеток достигают вершины сложности в центральной нервной системе, состоящей из десятков миллиардов клеток, каждая из которых связана с десятками тысяч таких же клеток. Подобные связи устанавливаются между клетками, которые каким-то образом выявляют и распознают друг друга, а затем объединяются вместе. Их ассоциации стабилизируются и поддерживаются рядом внеклеточных структурных элементов, ответственных главным образом за формирование определенной характерной структуры каждого типа ткани.

Наши ближайшие сородичи, другие млекопитающие, по строению и организации похожие на нас, имеют такие же типы клеток. Сходные клеточные типы имеются и у более далеких видов животных. Типичные мышечные или нервные клетки обнаруживаются у рыб, насекомых, моллюсков, червей, но их организация по мере понижения уровня упрощается. Еще ниже, на уровне низших беспозвоночных, характер клеток сам по себе начинает меняться — от многоклеточных организмов к колониям полуавтономных клеток. На самой нижней ступени этой лестницы находятся полностью независимые простейшие, например амебы, состоящие из одной клетки.

Растения также состоят из различных типов клеток, объединенных структурными элементами. Но организация растений отличается от животных. Их структура в основном зависит от запасания солнечной энергии, которая утилизируется в специальных фабриках световой энергии, зеленых хлоропластах. Если их удалить, то останется нечто, напоминающее животную клетку. Как и у животных, у растений имеются различные уровни организации — от наиболее сложных цветковых растений я деревьев до наиболее просто устроенных одноклеточных водорослей. У их не-фотосинтезирующих сородичей, грибов, также имеются ранги сложности, нисходящие от высших грибов до плесени и дрожжей.

Все эти клетки, составляющие животное и растительное царства, построены по одному общему плану. В частности, их тела имеют в своем составе объемную вентральную структуру определенной формы, называемую ядром, и разделены на многочисленные четко выраженные отделения мембранными перегородками. Такие клетки называются эукариотическими (греч. еu — хорошо, полностью и karyon— ядро).

Наряду с эукариотами существует более простая форма живых клеток, называемых прокариотами из-за того, что их ядpo имеет примитивную структуру. К прокариотам относятся бактерии. Их размеры намного меньше, чем у эукариотов, они живут отдельными особями или объединены в примитивные колонии и имеют очень простую внутриклеточную организацию.

Тем не менее, бактерии обитают в колоссальном числе видов животных, они умудрились заселить наиболее негостеприимные участки окружающей среды, в том числе насыщенные парами водоемы, в которых бьют горячие источники, и насыщенную солью воду высыхающих морей. Бактерии имеются повсюду, они выполняют немало весьма важных функций, благодаря которым остатки мертвых организмов превращаются в вещества, которые вновь включаются в круговорот жизни. Без бактерий жизнь эукариотов вскоре бы замерла. Однако некоторые бактерии болезнетворны — они способны внедряться в высшие организмы и вызывать заболевания.

Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений. Клетка, таким образом, несет полную характеристику жизни. Вне клетки не существует настоящей жизнедеятельности. Поэтому в природе планеты ей принадлежит роль элементарной структурной, функциональной и генетической единицы.

Это означает, что клетка составляет основу строения, жизнедеятельности и развития всех живых форм — одноклеточных, многоклеточных и даже неклеточных. Благодаря заложенным в ней механизмам клетка обеспечивает обмен веществ, использование биологической информации, размножение, свойства наследственности и изменчивости, обусловливая тем самым присущие органическому миру качества единства и разнообразия.

Занимая в мире живых существ положение элементарной единицы, клетка отличается сложным строением. При этом определенные черты обнаруживаются во всех без исключения клетках, характеризуя наиболее важные стороны клеточной организации как таковой.

Клетки многоклеточных организмов, как животных, так и растительных, обособлены от своего окружения оболочкой. Клеточная оболочка, или плазмалемма, животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10—20 нм. Основными составляющими гликокаликса служат комплексы полисахаридов с белками (гликопротеины) и жирами (гликолипиды). Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1—0,5 мкм, в котором не встречаются рибосомы и пузырьки, но в значительном количестве находятся микротрубочки и микрофиламенты, имеющие в своем составе сократимые белки.

Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В удержании (заякоривании) этих веществ на клеточной поверхности участвуют белки кортикального слоя. Наличие в оболочке рецепторов дает клеткам возможность воспринимать сигналы извне, чтобы целесообразно реагировать на изменения в окружающей их среде или состоянии организма. В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение.

В клетке выделяют ядро и цитоплазму. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порами диаметром 80—90 нм. Область поры или поровый комплекс с диаметром около 120 нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число.

В области порового комплекса начинается так называемая плотная пластинка- белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока, или матрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые, или фибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК.

Ядрышко представляет собой структуру, в которой происходит образование и созревание рибосомалъных РНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15 и 21-22 пары)- ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками. С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гликолиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2-3 нм и пронизывающей всю цитоплазму.

Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы - это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значения и специальные. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества - переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласты, в которых происходит фотосинтез.

Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети. Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20—30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма—с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Гольджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20) до нескольких сотен и даже тысяч на клетку.

Диктиосома представлена стопкой из 3-12 уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета просекрет), поступающий в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Митохондрии - это структуры округлой или палочковидной, нередко ветвящейся формы толщиной 0,5 мкм и длиной обычно до 5—10 мкм.

Оболочка митохондрии состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы.

Главная функция митохондрии состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата — АТФ). В целом этот процесс называется окислительным фосфорилированием. В энергетической функции митохондрии активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрии можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы представляют собой пузырьки диаметром обычно 0,2—0,4 мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом-внутриклеточное переваривание различных химических соединений и структур.

Первичными лизосомами (диаметр 100 нм) называют неактивные органеллы, вторичными - органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы (фаголизосомы) и аутолизосомы (цитолизосомы). В первых переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называют остаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1 —1,5 мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности, пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает 70-100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки - трубчатые образования различной длины с внешним диаметром 24 нм, шириной просвета 15 нм и толщиной стенки около 5 нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субъединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов. Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10 нм - промежуточные филаменты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли. Ее стенка образована 27 микротрубочками, сгруппированными в 9 триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

генетика клетка онтогенез гибрид

Законы Г. Менделя

В своих опытах по скрещиванию Мендель применял гибридологический метод. Используя этот метод, он изучал наследование по отдельным признакам, а не по всему комплексу, проводил точный количественный учет наследования каждого признака в ряду поколений, изучал характер потомства каждого гибрида в отдельности.

Первый закон Менделя - закон единообразия гибридов первого поколения.

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так по генотипу.

Мендель проводил моногибридное скрещивание чистых линий гороха, отличающихся по одной паре альтернативных признаков, например, по цвету горошин (желтые и зеленые).

В качестве материнского растения использовали горох с желтыми семенами (доминантный признак), а отцовского - горох с зелеными семенами (рецессивный признак).

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.