рефераты бесплатно
 

МЕНЮ


Установки погружных центробежных насосов (УЭЦН)

(3.12)

90

б) Определяем высоту междулопаточных каналов:

b3пр.=90*b3

(3.13)

D2max

где, b3пр.- приведенная высота от приведенной подачи, 3.3;

b3пр.= b3прив.* D2max

90

в) Находим диаметр диафрагмы D направляющего аппарата:

F”прив.=0,7859(D2вн.ст.-D2)*(90)2

(3.14)

D2max

где, F”прив-приведенная площадь кольца внутренней стенкой корпуса

ступени и диаметром ступени, 800;

D3=?D2 вн.ст. – F’’прив. * (D2max)2

0,785

90

Расчет направляющего аппарата:

а) l=l прив. * D2max

90

l=22*72,5

90

l=17,7 мм;

б) b3=b3прив.*D2max

90

b3=3,3 * 72,5

90

b3=2,66 мм;

в) D3=?D2 вн.ст. – F’’ (D2max)2

0,785 90

D3=?76,52 – 800 (72,5)2

0,785 90

D3=72,04 мм;

КПД ступени 0,38

3.2.Проверочный расчет шпоночного соединения.

Шпоночное соединение проверяется по боковым граням шпонки под действием

окружного усилия, передаваемого рабочему колесу:

?=2Mр.к.D(h-t)*l

(3.15)

где, Мр.к. – момент передаваемый рабочему колесу.

D – диаметр вала;

t - глубина паза по валу;

l - длина посадочной части рабочего колеса;

h – высота шпонки.

Момент, передаваемый рабочему колесу определяется из мощности

передаваемой двигателем насосу. Мощность двигателя выбирают по основным

параметрам насоса. К основным параметрам относятся подача, напор, КПД. Для

определения напора необходимо определить количество ступеней находящихся в

насосе. Количество ступеней можно определить следующим образом. Существует

5 видов секций отличающихся длиной, в зависимости от длины в каждой секции

располагаются различное число ступеней. Для расчета возьмем следующий

насоса: ЭЦН М-5-50-1300 состоящий из 2-х секций № 2 и № 5, в некоторых

расположено 264 ступени, в секции № 2 расположено 73 ступени, а в секции №

5 расположено 192 ступени. Длина одной ступени ЭЦН 50 - 24 мм. Ступени

насоса в секциях располагаются в пределах:

L=n*l

(3.16)

где, n – число ступеней;

l - длина одной ступени;

L = (72*24) + (192*24)

L = 1728 + 4608

L = 6336 мм

Длина одной ступени ЭЦН – 30 равна 17,5 мм, в секциях расположится:

nр=L

(3.17)

lp

где, np – число ступеней, рассчитываемого насоса в двух секциях;

lp – длина одной ступени ЭЦН – 30.

np=6336

17,5

np=362 ступени

Значит в секции № 2 расположится 99 ступеней, а в секции № 5 расположится

263 ступени. Напор одной ступени равен 3,73 м. Общий напор равен

произведению количества ступеней на напор одной ступени:

H=N*h

(3.18)

где, h-напор одной ступени

H=362*3,73

H=1350,26 м

H=1350 м.

Гидравлическая мощность насоса равна:

Nг=Q*H*j

(3.19)

102 *?

где, Q – подача насосной установки;

H – напор насоса

j-относительный удельный вес жидкости

?-КПД насоса;

Q = 30 м3 /сут =3,5*10-4 м3 /с

Н = 1350 м

j=1900 кг/м3

?=0,43

Nг=3,5*10-4 *1350*1300

102*0,43

Nг =15 КВт

Мощность двигателя должна быть:

Nд ? 1,05 Nг,

(3.20)

где Nд – мощность двигателя;

Nг – гидравлическая мощность насоса;

Nд = 1,05*15

Nд=15,8 КВт

По (1) подбираем двигатель, соответствующий условию отраженному в формуле

(3.20):

Двигатель ЭД 20-103

Мощность двигателя Nд=20 КВт.

Момент, передаваемый на рабочее колесо:

Мр.к.=Nдв.

(3.21)

Nz*n

где, Nдв. – мощность подобранного двигателя;

Nz – число рабочих колес, установленных в насосе;

n – число оборотов вала насоса;

Nz =362 ступени

n=2840 об/мин=47,33 об/сек

Мр.к. = 20*103

362*47,33

Мр.к.=1,17 Вт.

Расчет шпонки на смятие производится по формуле (3.15):

?см.= 2Мр.к.

D (h-t)*l

Мр.к.=1,17 Вт.

D=17мм=0,017 м

l=10мм=0,01 м

h=1,6мм=0,0016 м

t=0,8мм=0,0008 м

?см= 2*1,17

0,017(0,0016-0,0008)*0,01

?см.=17205881 Н/м2

?см.=17,2 Мпа

Шпонка представляет собой кружок твердый, вытянутый, изготовленный из

латуни марки П63. Сопротивление латуни этой марки разрыву:

?в=75-95 кгс/мм2

?в=750-950 МПа

Сопротивление смятию находится в пределах Ѕ ?в, запас прочности на смятие

нас удовлетворяет.

3.3.Проверочный расчет шлицевого соединения.

Шлицевое соединение проверяется на смятие по формуле:

?см.=Т

(3.22)

0,75z Асм*Rср.

где, Т – передаваемый вращаемый момент;

z - число шлицев;

Ам – расчетная поверхность смятия;

Rср. – средний радиус шлицевого соединения.

Средний радиус шлицевого соединения определяется как:

Rср.=0,25 (D+d)

(3.23)

где, d-диаметр впадин шлицев, ;

D-максимальный диаметр шлицев;

D=0,017 м

d=0,0137 м

Rср.=0,25 (0,017+0,137)

Rср.=0,007675 м

Расчетная поверхность смятия равна:

Асм.=(D-d-2f)*l

(3.24)

2

где, f-фаска на шлицах;

l-длина контактирующей поверхности шлицевого соединения;

f=0,003 м

l=0,04 м

Асм.= (0,017-0,0137 – 2*0,0003)*0,04

2

Асм.=0,000042 м2

Т=Nдв

(3.25)

n

где, Nдв.- мощность двигателя;

n - число оборотов вала;

Nдв.=20 КВт=20000Вт

n=2840 об/мин=47,33 об/сек

Т=20000

47,33

Т=422,6 Н*м

?см.= 422,6

0,75*6*0,000042**0,007675

?см=291308000 Н/м

?см=291,308 Мпа.

Вал насоса изготовлен из высоколегированной стали.

[?см]вала=500-1100 МПа.

Следовательно, шлицевое соединение, рассчитанное нами и проверенное на

смятие удовлетворяет нашему насосу.

3.4.Расчет вала ЭЦН

Различают валы прямые, коленчатые и гибкие. Наибольшее распространение

имеют прямые валы. Коленчатые валы применяют в поршневых машинах. Гибкие

валы допускают передачу вращения при больших перегибах. По конструкции

различают валы и оси гладкие, фанонные или ступенчатые, а так же сплошные и

полые. Образование ступеней на валу связано с закреплением деталей или

самого вала в осевом направлении, а также с возможностью монтажа детали при

подсадках с натягом. Полые валы изготавливают для уменьшения массы или в

тех случаях, когда через вал пропускают другую деталь, подводят масло и пр.

Прямые валы изготавливают преимущественно из углеродных и легированных

сталей.

Валы рассчитывают на прочность.

Расчет вала на прочность.

Во время работы вал насоса подвергается воздействию крутящего момента,

осевой сжимающей нагрузки на верхний торец вала и радиальной нагрузки.

Радиальная нагрузка на вал вызывается насосным расположением валов секций

насоса и протектора и возможность неточного изготовления шлицевого

соединения.

Предварительно оценивают средний диаметр вала по внутреннему диаметру

шлицев d концентрационных напряжений и изгиба вала:

?кр=Mкр.max=Mкр.max

(3.26)

Wр=0,2*d3 вн.

где, dвн.=Мкр.max

(3.27)

0,2*?кр

Максимальный крутящий момент:

Мкрmax=Nmax

(3.28)

w

где, N max– приводная мощность двигателя, 13 т;

w= ?*n - угловая скорость, сек;

30

п-частота вращения электродвигателя, об/мин.

Напряжение на кручение определяем по пределу текучести материала ?т.

Допустимое касательное напряжение при кручении принимаем с коэффициентом

запаса прочности ?=1,5;

?=[?]= ?т = ?т (3.18)

? 2?

Для вала насоса ЭЦН берем сталь 40ХН с пределом текучести ?=750 Мпа.

Насосное соединение валов и некомпенсированные зазоры создают радиальную

нагрузку в 60-130 кг.с, действующую на шлицевой конец вала насоса.

Радиальная нагрузка Р, находится по формуле:

Р1=K[3E*J*?у]

(3.29)

C3

где, К – коэффициент, учитывающий компенсирующее влияние зазоров

и равный 0,45-0,85;

Е – модуль упругости материала вала, Па.

J – момент инерции вала, принимаемый с учетом тела втулки. М;

?у – стрела прогиба шлицевого конца вала, вызванная неспособнос-

тью в сочленении насоса и протектора, принимается равным 25*10 м;

С – расстояние от центра подшипника до середины муфты, м;

Момент инерции вала:

J=?*d4вн.*а*(D-dвн.)*(D+dвн.)*z

(3.30)

64

где, а – ширина шлицы, м;

D – наружный диаметр шлицев, м;

z – число шлицев.

Радиальная нагрузка на вал Р2, зависящая от неравномерной передачи

крутящего момента шлицами малы и ею можно пренебречь.

Пять работающих шлицев дают нагрузку, равную 0,2*Р, где

Рокр.=2*Мкр.max

(3.31)

dср.

где, D – средний диаметр шлицев.

Р2=0,2*Рокр.

(3.32)

Изгибающий момент на шлицевом конце вала:

Мизгб.max=(Р1+Р2)*b

(3.33)

где, b-расстояние от середины муфты или от точки приложения силы Р

до проточки под стопорное кольцо, м.

Мизг.max.=(Р1-Р2)*b.

Зная момент изгиба и момент кручения, можно определить напряжение изгиба

и кручения в опасном сечении вала (под проточку на стопорное кольцо).

?изг.max=Мизг.max

(3.34)

Wx

Wх=?*d4кр.

(3.35)

32*D

где, Wх- момент сопротивления в месте проточки под стопорное кольцо,

м;

dкр.-диаметр вала в месте проточки под стопорное кольцо, м;

?изгб.min=Мизг.min

(3.36)

Wx

Напряжение кручения

?кр.=Мкр.max

(3.37)

Wp

Wр=2*Wx – полярный момент сопротивления вала в месте проточки под

стопорное кольцо;

Эквивалентное напряжение находим по четвертной прочности:

?экв.=??2изг.max+3?2

(3.38)

По этой величине и пределу текучести материала вала устанавливается запас

прочности с учетом статистических нагрузок:

п=?т?1,3

(3.39)

?экв

Исходные данные:

Приводная мощность двигателя N = 2000Вт. Частота оборотов двигателя

п=2840 об/мин. Предел текучести материала вала ?=750 МПа. Модуль упругости

материала вала У=20*10 МПа. По данной методике произведем расчет с

цифровыми значениями:

Момент инерции вала:

J= ?*d4вн.+ а (D-dвн) * (D +dвн)2*z

64

J= 3,14*0,0124 + 0,0035 (0,017 – 0,012)*(0,017+0,012) 2*6

64

J=2,3*10-10 м;

Нагрузка создаваемая работающими шлицами:

Р2=0,2*Рокр.

Р2=0,2* Mкр.max

dср

Р2=0,2 * 2*67,28

0,0155

Р2= 1736,2584.

Максимальный изгибающий момент в месте проточки под стопорное кольцо:

Мизг.max= (Р1+Р2)*b

Мизг.max=(258,957+1736,258)*0,035

Мизг.max=69,83 Н*м.

Минимальный изгибающий момент в этом сечении:

Мизг.min=(Р1-Р2)*b

Мизг.min=(258,957-1736,258)*0,035

Мизг.min=51,74 Н*м;

Напряжение изгиба в опасном сечении:

?изг.max=Мизг.max

Wx

где, W= ?*d4кр

32*D

W=3,14*0,01574

32*0,017

W=3,51*10-7 м3;

Это мы нашли осевой момент сопротивления вала:

?изг.max.= 69,83

3,51*10-7

?изг.max =198,945Мпа

Минимальное напряжение изгиба

?изг.min.= 51,71

3,51*10-7

?изг.min.= 147,321 МПа

Напряжение кручения:

?кр=Мкр.max

Wp

где, Wр=2*Wх

Wр=2*3,51*10-7

Wр=7,02*10-7 м

Это мы нашли полярный момент сопротивления вала

?кр.= 67,28

7,02*10-7

?кр.=96,114 Мпа;

Эквивалентное напряжение:

?экв=??2 изг.max + ?кр2

?экв=?198,9452+3*96,1142

?экв.=259,409 Мпа;

Запас прочности по пределу текучести:

п= ?т ? 1,3

?экв

п= 750

259,409

п=2,8;

Из результатов расчетов видно, что вал из стали 40 ХН диаметром 17 мм со

шлицем и с проточкой под стопорное кольцо выдерживает заданные нагрузки с

коэффициентом запаса прочности п=2,8, который удовлетворяет условию

2,8>[1,4].

3.5.Прочностной расчет

3.5.1.Прочностной расчет корпуса насоса

Корпусы погружных центробежных насосов изготавливают из трубных

заготовок точением или из холодных комбинированных труб повышенной точности

длиной 2100, 3600 и 5000 мм.

Корпус насоса будет рассчитываться в следующей последовательности.

1.Выбираем наружный диаметр и внутренний корпуса насоса.

Dвн.=0,092 м, Dвн=0,08 м

2.Определяем предварительную затяжку пакета ступеней с учетом

коэффициента запаса плотности верхнего стыка по формуле:

T=?К?gНrвн.[1-Eк-Fк/2 (ЕкFк+Ена Fна)]

(3.40)

где К – коэффициент запаса плотности стыка;

К=1,4

? - плотность воды;

?=1000м/кг

g – ускорение свободного падения;

g = 9,8 м/с

H- максимальный напор насоса;

Н =1300 м

r - внутренний радиус расточки корпуса насоса;

r=0,04 м

Ек- модуль упругости материала корпуса насоса;

Ек=0,1х10 6Мпа

Fк – площадь поперечного сечения корпуса насоса;

Fк=1,62х10 -3 м 2

Ена- модуль упругости материала направляющего аппарата;

Ена=1,45х10 5МПа

Fна – площадь поперечного сечения направляяющего аппарата;

Fна=6,08х10-4 м2

Т=3,14х1,4х1000х9,81х1160х0,042 [1-2,1х106 х1,62[10-3 /2(2,1х106 х1,62х10-

3 +1,45х105 х6,08х10-4 ) ]=48256Н

3.Находим общее усилие, действующее вдоль оси корпуса по выражению:

Q=Т+?gНrвн 2 EкFк/2(ЕкFк+ЕнаFна)+G + ?К?gНrвн

(3.41)

где Т – предварительная затяжка пакета ступеней, определенная по формуле

(3.40)

Т=48256Н

G – масса погружного агрегата;

G =20505 Н;

Hmax - максимальный напор насоса;

Нmax =3500 м

Q = 268519Н

4.Вычисляем осевое напряжение в опасных сечениях корпуса по формуле

?=Q/Fк

(3.42)

где Q – общее усилие, действующее вдоль корпуса насоса, определенное по

выражению (3.41)

Q=268591 Н

Fк – площадь ослабленного сечения корпуса по наружному диаметру

трубы;

Fк =1,24х10-3 м2

?z=268519/1,24х10-3=220МПа

5.Определяем тангенциальное напряжение в опасных сечения, по выражению:

?=pgHmaxrвн/S-MT/F’

(3.43)

где S – толщина корпуса в опасном сечении;

S=0,009 м

M – коэффициент Пуассона;

M=0,28

?т=142 МПа

3.5.2.Прочностной расчет винтов страховочной муфты.

Расчет винтов на срез произведем по формуле:

??[?]

(3.44)

где ? – напряжение среза действующее на винты страховочной муфты;

[?] – допускаемое напряжение среза.

Допускаемое напряжение среза определяется по формуле:

[?]=0,4?т

где ?т – предел текучести материала винта, для стали 35 из которой

изготовлены винты

?т=360МПА.

[?]=0,4х360=144МПа

Напряжение среза действующее на винты определяем по формуле

?=4S/пdхz

Страницы: 1, 2, 3, 4, 5, 6


ИНТЕРЕСНОЕ



© 2009 Все права защищены.