рефераты бесплатно
 

МЕНЮ


Разработка месторождений газоконденсатного типа

при вступлении системы в область прямого испарения, причем данное явление

нашло свое проявление не только в количественном отношении, но и в

качественном.

Следует иметь в виду возможное влияние ретроградного конденсата в жидкой

фазе ГКС как на величину рмк, так и на интенсивность прямого перехода

жидких компонентов в газовую фазу. Безусловную роль в рассматриваемых

явлениях играют также качественные характеристики фракции С5+, отличающейся

намеренно упрощенным составом и невысокой молекулярной массой, и фракции

промежуточных углеводородов, не имеющей в своем составе этана.

Рассматриваемые экспериментальные данные были соотнесены с результатами

соответствующих термодинамических расчетов (рис. 1.36), позволивших

дополнительно продемонстрировать роль пропан-бутановой фракции в межфазных

массообменных процессах при истощении ГКС. Для расчетов было взято три

варианта состава исходной ГКС (табл. ), первые два из которых полностью

аналогичны уже приводившимся модельным системам (см. табл. ).

Из рис. 1.36 видно, что потери конденсата на начальной стадии отбора

пластовой смеси при "недостаточном" содержании компонентов С3 —С4 в

исходной ГКС возрастают пропорционально площади между кривыми,

соответствующими '"менее благоприятным" и "более благоприятным" с точки

зрения присутствия С3 —С4 условиям эксперимента. Рассмотрение графических

зависимостей, построенных на основании аналитических расчетов, позволило

выявить более четкую, по сравнению с экспериментальными данными,

зависимость рнк фракции С5+от величины пластового давления. Следует

отметить достаточно хорошее совпадение экспериментальных результатов с

расчетными данными.

Таким образом, исследования ВНИИГАЗа показали, что для повышения

конденсатоотдачи пласта при разработке газоконденсатных месторождений

возможно использование сайклинг-процесса не только в его "классических"

вариантах. Предложенные новые варианты частичного поддержания пластового

давления с учетом состава пластовой смеси предусматривают нагнетание газа

на той стадии истощения объекта, когда природное количество этан-пропан-

бутановой фракции в смеси обеспечивает повышенное содержание конденсата

(фракции С5+) в равновесной газовой фазе. Если природного количества С2 —С4

недостаточно, возможно до нагнетания сухого газа создание в истощенном

пласте оторочки из газа, обогащенного этими компонентами. По существу, речь

идет об оптимизации частичного сайклинг-процесса. На такой способ

разработки газоконденсатных месторождений автором и группой специалистов

получен патент [45].

Поддержание давления путем нагнетания воды

Одним из возможных способов повышения эффективности разработки

газоконденсатных месторождений могло бы быть заводнение продуктивных

пластов по аналогии с нефтяными и газовыми залежами. Однако применительно к

газоконденсатным залежам этот способ воздействия далеко не универсален и

требует специального рассмотрения с учетом особенностей конкретного

продуктивного пласта.

Одной из наиболее важных геолого-промысловых характеристик залежи является

глубина ее залегания. Для газоконденсатных и нефтегазоконденсатных залежей

она варьирует от менее 1000 до 6000 м и более. При небольших отступлениях

обычно выдерживается прямая зависимость начального пластового давления,

начального содержания конденсата в газе и обратная зависимость пористости,

а также проницаемости от глубины залегания продуктивных отложений.

Серьезной проблемой является эксплуатация скважин на месторождении при

наличии в их продукции значительного количества свободной жидкости

(углеводородного конденсата, нефти, воды). Особенно усугубляется эта

проблема при больших глубинах залегания объекта разработки, поскольку

отечественные газоконденсатные и нефтегазоконденсатные месторождения

эксплуатируются, за редким исключением, на режиме использования только

естественной энергии пласта и на определенной стадии отбора запасов

углеводородов снизившееся забойное давление не обеспечивает вынос жидкости

на поверхность, дебит скважины падает, и в конце концов скважина может

остановиться.

Таким образом, поддержание пластового давления при разработке

месторождения является средством не только повышения углеводородоотдачи

пласта, но и сохранения работоспособности добывающих скважин.

Примеры различных, достаточно широко применяемых за рубежом вариантов

поддержания давления в залежи нагнетанием газа были рассмотрены выше (в

предыдущем разделе).

Закачка воды в продуктивные газоконденсатные и нефтегазоконденсатные

пласты также может в конкретных случаях явиться приемлемым способом

повышения эффективности разработки объекта. Однако отмеченные выше

особенности глубокозалегающих продуктивных пластов и скважин обычно

ограничивают возможности искусственного заводнения. Иногда препятствием для

данного метода воздействия может явиться резкая неоднородность и

трещиноватость пород, поскольку лабораторные эксперименты указывают на

быстрые прорывы воды в этом случае к добывающей скважине. Тем не менее

предложены варианты технологий разработки газоконденсатных и

нефтегазоконденсатных месторождений, позволяющие достаточно успешно

применять заводнение в условиях конкретных объектов.

Ниже излагаются результаты некоторых теоретических, экспериментальных и

промысловых исследований по проблеме повышения эффективности разработки

газоконденсатных и нефтегазоконденсатных залежей и поддержания

работоспособности добывающих скважин путем воздействия на залежь

нагнетанием воды или путем регулирования отборов пластовых флюидов.

В.Н. Мартос проанализировал результаты использования заводнения при

разработке ряда отечественных и зарубежных нефтегазовых и

нефтегазоконденсатных месторождений [10, 26]. В отличие от газоконденсатных

месторождений, при этом важна последовательность отбора запасов

углеводородов, изначально представленных не только газовой фазой в

пластовых условиях, но и жидкой. Если запасы жидких углеводородов (нефти)

достаточно велики, то иногда именно эти углеводороды представляют основной

объект эксплуатации.

В промышленных масштабах впервые в России на Бахметьевском месторождении

было применено барьерное заводнение в 60-е годы. Нефтегазовая залежь Б1

тульского горизонта приурочена к брахиантиклинальной складке с пологим

восточным (1,5 — 2°) и крутым западным (до 40°) крыльями. Продуктивный

пласт залегает на глубинах 1000—1100 м. В разрезе насчитывается до шести

слоев мелко- и среднезернистых, неравномерно консолидированных песчаников,

различающихся переменной толщиной. Эти слои расчленены глинами и

алевролитами. Наиболее выдержаны по площади три верхних слоя, причем два из

них изолированы от остальной толщи глинистым пропластком толщиной от 1 до 6

м. Соответственно в продуктивном интервале выделяют верхнюю пачку Б},

включающую два первых песчаных слоя, и нижнюю Б,2, объединяющую остальные.

Начальное положение ВНК в обеих пачках было одинаковым, на абсолютной

отметке минус 913 м. ГНК занимал различное положение: в пачке Б| на отметке

минус 875 м, в пачке Б,2 — минус 860 м. Этаж нефтеносности составлял

соответственно 38 и 53 м, газоносности 69 и 50 м. Отношение объемов газовых

и нефтяных зон равнялось 1,2 и 0,2, причем 80 % всех запасов нефти было

сосредоточено в нижней пачке. Начальное пластовое давление составляло 10,4

МПа.

Нефть нафтенометановой природы характеризовалась в пластовых условиях

начальными вязкостью 4,5 мПа-с и плотностью 0,808 г/см3. Объемный пластовый

фактор нефти был равен 1,11, газонасыщенность нефти — 60 м3/т. Давление

насыщения было близко к начальному пластовому давлению.

Согласно первоначальному варианту, разработку залежи предполагали вести

путем отбора только нефти при консервации газовой шапки, поддерживая

давление нагнетанием воды за контур нефтеносности. На восточном крыле

структуры с основными запасами нефти пробурили три ряда эксплуатационных

скважин, сосредоточив их преимущественно в пределах чисто нефтяной зоны

пачки Б2. Чтобы избежать загазовывания нефтяной оторочки, скважины

центрального ряда предполагалось эксплуатировать при забойных давлениях не

ниже давления в газовой шапке.

В промышленную разработку залежь ввели в 1955 г., однако проектные

показатели не были выдержаны: закачка воды не компенсировала отборов нефти.

К 1960 г. пластовое давление снизилось на 1 МПа, начали загазовываться

скважины внутреннего ряда. Некоторые скважины с особенно высокими газовыми

факторами остановили и законсервировали. В этой ситуации специалисты

института "ВолгоградНИПИнефть" предложили наряду с законтурным применить

барьерное заводнение. Несмотря на неравномерность ряда «барьерных» скважин,

задержки в освоении и в темпах нагнетания воды, закачка воды в зону

нефтегазового контакта благоприятно повлияла на динамику отборов нефти и

нефтеотдачу. Согласно прогнозу, конечная нефтеотдача должна была составить

примерно 70 % от начальных запасов. В 1970 г. была введена в эксплуатацию

газовая шапка, что стало возможным благодаря барьерному заводнению.

Наблюдениями за скважинами внешнего и среднего рядов, которые испытывали

влияние барьерного заводнения, было установлено, что отсеченный водой газ

перемещается в глубь оторочки. По этой причине газовые факторы скважин

временно возрастали до нескольких тысяч м3/т. За газом двигался нефтяной

вал. После его подхода к скважинам газовые факторы резко снижались, а

дебиты скважин нередко превышали начальные величины. Геофизическими

исследованиями был установлен характер растекания воды на подошве пласта.

Возможно, на него повлияла не только гравитация, но и слоистая

неоднородность нижней пачки. Было также установлено, что продвижение воды в

газонасыщенную зону шло неравномерно: в нижней, более проницаемой пачке

фронт воды продвигался быстрее, нежели в верхней пачке.

Опыт применения барьерного заводнения на Бахметьевском месторождении

весьма полезен, несмотря на ряд недостатков системы разработки, поскольку

продемонстрировал реальные возможности повышения углеводородоотдачи

пластов.

Несомненный интерес представляет описанный В.Н. Мартосом опыт применения

барьерного заводнения при разработке крупной нефтегазо-конденсатной залежи

месторождения Адена (США, Колородо, округ Морган). Моноклинально залегающий

продуктивный пласт дакота мелового возраста представлен мелкозернистыми

песчаниками со средней пористостью 19,7 % и проницаемостью 356-10"15 м2.

Угол падения пласта около 0,5°, средняя глубина залегания минус 1725 м,

средняя толщина 9 м. Размеры залежи в плане 5,5x11 км, площадь

нефтеносности 3410 га, газоносности 1880 га.

Начальное пластовое давление составляло 10,7 МПа, температура 81,4 °С.

Плотность нефти 0,8096 г/см3, вязкость при пластовых условиях 0,35 мПа-с.

Газонасыщенность нефти при начальных пластовых условиях была равна 89

м3/м3. Геологические запасы нефти оценены в 22,1 млн. м3.

Газоконденсатная зона залежи была открыта в мае 1953 г., нефтяная — в

ноябре 1953 г. К середине 1954 г. на месторождении имелось 170 нефтяных и

15 газовых скважин. По первоначальному плану залежь предполагалось

разрабатывать на нефть с консервацией газовой шапки, причем давление

поддерживать не предполагалось.

За первые 9 мес разработки нефтяной оторочки пластовое давление

понизилось на 0,52 МПа. Нефтяные скважины вблизи ГНК вступали в работу с

повышенным газовым фактором и быстро загазовывались. Быстро возрастал

газовый фактор и на скважинах, удаленных от начального ГНК. Анализ динамики

показателей эксплуатации скважин свидетельствовал о том, что основные

энергетические ресурсы пласта обусловлены сжатым газом газовой шапки и

растворенным в нефти газом. Из-за пологого залегания пласта режим газовой

шапки оказался малоэффективным, наблюдалась тенденция к загазовыванию

нефтяной оторочки вследствие локальных прорывов газа по высокопроницаемым

пропласткам.

Лабораторные опыты на кернах, отобранных из продуктивного объекта,

показали, что эффективное извлечение остаточных запасов нефти должно

обеспечить заводнение. Было установлено также, что линейное заводнение в

данном случае целесообразнее площадного.

При составлении проекта вторичной разработки залежи рассматривали два

варианта. По первому из них предполагалось осуществить прикон-турное

заводнение, по второму — барьерное. После тщательного изучения преимуществ

и недостатков этих вариантов был выбран второй — барьерное заводнение.

Согласно принятому проекту в зоне контакта газ — нефть были пробурены 24

нагнетательные скважины. Кроме того, под нагнетание переоборудовали восемь

эксплуатационных скважин. Закачку воды начали 1 июля 1957 г. Темп

нагнетания за 6 мес возрос с 6350 до 11 900 м3/сут. К ноябрю 1957 г. между

нефтяной и газовой зонами был образован сплошной водяной барьер. Пластовое

давление начало повышаться.

Первоначально общую нефтеотдачу после окончания заводнения оценивали в

55 %. Фактический ход разработки показал, однако, что отдельные участки в

пределах нефтяной оторочки слабо реагировали на закачку воды. Было

установлено также, что в подошве продуктивного интервала имеется

малопроницаемый пропласток, не охваченный вытеснением. С учетом этих

обстоятельств было подсчитано, что коэффициент нефтеотда-чи по различным

участкам составит от 55 до 40 % при среднем значении 47 %.

Ход разработки и достигнутые результаты подтвердили рациональность

барьерного заводнения на месторождении Адена. По расчетам, эксплуатацией

залежи на истощение можно извлечь максимум 30 % геологических запасов

нефти. Таким образом, дополнительный прирост нефтеотда-чи за счет закачки

воды уже к середине 1965 г. составил 10 %, а общий прирост — 17 %. Однако

выигрыш, полученный благодаря применению барьерного заводнения, этим не

исчерпывается. В период разработки залежи на истощение промысел испытывал

значительные затруднения, связанные с загазовыванием скважин. Скважины

приходилось останавливать из-за превышения предельно допустимых газовых

факторов. Поддерживать нормированный темп извлечения нефти при достигнутой

нефтеотдаче 12 % оказалось невозможным. Это означало, что срок разработки

залежи растянулся бы на долгие годы. Барьерное заводнение радикально

изменило положение дел на промысле. Указанные затруднения отпали вскоре

после закачки воды.

Наряду с интенсификацией добычи нефти представилась возможность ввести в

эксплуатацию газоконденсатную зону, что повысило экономичность системы

разработки. Ликвидация прорывов газа в нефтяную зону улучшила коэффициент

его утилизации.

Несмотря на высокую оценку эффективности барьерного заводнения, полнота

использования запасов нефти не удовлетворяет компанию "Юнион ойл", которая

разрабатывает месторождение Адена. В связи с этим компания обратилась к

третичным методам добычи. Лабораторными опытами было установлено, что в

местных условиях для извлечения остаточной нефти целесообразно использовать

метод смешивающегося вытеснения, предусматривающий образование в пласте

оторочки из пропана и продвижение ее путем попеременной закачки газа и

воды. Поэтому в 1962—1965 гг. провели два промышленных эксперимента,

результаты которых показали, что основные затруднения на пути промышленного

внедрения метода смешивающегося вытеснения связаны с регулированием

коэффициента охвата.

На фоне общего потока воды от начального ГНК в глубь оторочки

закачиваемый через одиночные скважины пропан продвигался в этом же

направлении узкими языками. Временное прекращение барьерного заводнения в

полосе одного из опытных участков привело к локальному вторжению в эту зону

газа из газоконденсатной шапки. Зафиксированы также быстрые прорывы газа,

закачиваемого вслед за пропаном, в наблюдательные скважины. Коэффициент

вытеснения в охваченных зонах по расчету близок к 1, но коэффициенты охвата

примерно в 4 раза ниже прогнозных.

Накопленный в ходе промышленных экспериментов опыт позволяет

специалистам в общем оптимистично оценивать возможности смешивающегося

вытеснения остаточной нефти. Предположительно на 1 м3 закачанного пропана

можно добыть 2 м3 нефти. Соотношение затрат и прибылей в этом случае

оказывается выгодным. Поэтому можно было ожидать, что после окончания

заводнения приступят к третичной разработке месторождения Адена.

Прогрессивная технология барьерного заводнения с использованием

загустителя воды была испытана на нефтегазовом месторождении Норт Ист

Холсвил (США).

Залежь Крейн месторождения расположена в округе Харисон (штат Техас) и

приурочена к оолитовым известнякам, залегающим на глубине 2100 м. Она была

открыта в 1950 г. и считалась газовой, пока в 1956 г. не была обнаружена

нефтяная оторочка.

Продуктивный интервал представлен двумя тонкими пропластками с окнами

слияния в пределах нефтяной оторочки. Средняя эффективная мощность равна

2,4 м, пористость коллекторов — 17 %, проницаемость 50-10-15 м2. В

структурном отношении залежь представляет собой пологую моноклиналь

вытянутой формы. Площадь продуктивности оценивается в 6,9 тыс. га, из них

2,8 тыс. га занимает оторочка. Начальные запасы нефти составляли 2,7 млн.

м3. Нефть легкая, летучая.

Добыча газа до обнаружения нефтяной оторочки вызвала смещение ее вверх

по структуре. Четкого контакта газ —нефть к 1956 г. уже не было, а

образовалась широкая переходная зона в интервале отметок от —1920 до —1950

м.

Оторочку быстро разбурили и ввели в эксплуатацию. Нефть, однако,

продолжала мигрировать в газовую шапку. Пластовое давление снижалось

быстрее, чем это могло быть вызвано отбором нефти. Наряду со смещением

оторочки наблюдались локальные прорывы в нее газа. Большинство скважин

работало с ГФ более 3500 м3/м3, и поэтому дебиты их были резко ограничены.

В такой ситуации единственным реальным методом, способным остановить

миграцию нефти, было признано барьерное заводнение. Проведенные расчеты

показали, однако, что водяной барьер окажется недостаточно эффективным.

Закачиваемая вода в сложившихся условиях будет вторгаться в основном в

газовую зону и полностью остановить нефть не сможет. Возникла идея

загустить воду с помощью водорастворимого полимера. В результате

лабораторных и промысловых экспериментов сделан вывод о том, что для

создания эффективного барьера между нефтяной и газовой зонами в

закачиваемую воду достаточно ввести 0,025 % частично гидролизованного

полиакриламида типа пушер.

Под закачку воды перевели две газовые скважины, которые вместе с двумя

дополнительно пробуренными создали довольно плотный "барьерный" ряд,

примерно отвечавший текущему положению ГНК. В мае 1963 г. через скв. 37-2 и

35-1 начали закачивать воду с расходом 480 м3/сут. В ноябре в воду стали

вводить полимер, поддерживая его концентрацию на уровне 0,025 %. Из

промежуточных скв. 36-1 и 37-3 в начальный период заводнения отбирали

жидкость и газ для ускоренного образования барьера.

Страницы: 1, 2, 3, 4, 5, 6, 7


ИНТЕРЕСНОЕ



© 2009 Все права защищены.